File size: 8,764 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import numpy as np

import cliport.models as models
import cliport.models.core.fusion as fusion
from cliport.models.core.transport import Transport


class TwoStreamTransportLangFusion(Transport):
    """Two Stream Transport (a.k.a Place) module"""

    def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device):
        self.fusion_type = cfg['train']['trans_stream_fusion_type']
        super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device)

    def _build_nets(self):
        stream_one_fcn, stream_two_fcn = self.stream_fcn
        stream_one_model = models.names[stream_one_fcn]
        stream_two_model = models.names[stream_two_fcn]

        self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)
        self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)
        self.fusion_key = fusion.names[self.fusion_type](input_dim=self.kernel_dim)
        self.fusion_query = fusion.names[self.fusion_type](input_dim=self.kernel_dim)

        print(f"Transport FCN - Stream One: {stream_one_fcn}, Stream Two: {stream_two_fcn}, Stream Fusion: {self.fusion_type}")

    def transport2(self, in_tensor, crop, l):
        logits = self.fusion_key(self.key_stream_one(in_tensor), self.key_stream_two(in_tensor, l))
        kernel = self.fusion_query(self.query_stream_one(crop), self.query_stream_two(crop, l))
        return logits, kernel

    def forward(self, inp_img, p, lang_goal, softmax=True):
        """Forward pass."""
        if len(inp_img.shape) < 4:
            inp_img = inp_img[None]

        if type(inp_img) is not torch.Tensor:
            in_data = inp_img # .reshape(in_shape)
            in_tens = torch.from_numpy(in_data).to(dtype=torch.float, device=self.device)  # [B W H 6]
        else:
            in_data = inp_img
            in_tens = in_data

        in_tensor = torch.nn.functional.pad(in_tens, tuple(self.padding[[2,1,0]].reshape(-1)), mode='constant')
        if type(p[0]) is not torch.Tensor:
            p = torch.FloatTensor(p)[None]

        in_tensors = []
        crops = []

        # this for loop is fast.
        for i in range(len(in_tensor)):
            in_tensor_i = in_tensor[[i]]           
            # Rotation pivot.
            pv = p[i] + self.pad_size

            # Crop before network (default for Transporters CoRL 2020).
            hcrop = self.pad_size
            in_tensor_i = in_tensor_i.permute(0, 3, 1, 2)

            crop = [in_tensor_i] * self.n_rotations
            crop = self.rotator(crop, pivot=pv.float())
            crop = torch.cat(crop, dim=0)
            crop = crop[:, :, int(pv[0]-hcrop):int(pv[0]+hcrop), int(pv[1]-hcrop):int(pv[1]+hcrop)]

            in_tensors.append(in_tensor_i)
            crops.append(crop)

        logits, kernels = self.transport(torch.cat(in_tensors,dim=0), torch.cat(crops, dim=0), lang_goal) #crops.shape:(8, 36, 6, 64, 64)
        res =  self.correlate(logits, kernels, softmax)
        return res
        
class TwoStreamTransportLangFusionLat(TwoStreamTransportLangFusion):
    """Two Stream Transport (a.k.a Place) module with lateral connections"""

    def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device):

        self.fusion_type = cfg['train']['trans_stream_fusion_type']
        super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device)

    def transport(self, in_tensor, crop, l):
        key_out_one, key_lat_one = self.key_stream_one(in_tensor)
        key_out_two = self.key_stream_two(in_tensor, key_lat_one, l)
        logits = self.fusion_key(key_out_one, key_out_two)

        query_out_one, query_lat_one = self.query_stream_one(crop)
        query_out_two = self.query_stream_two(crop, query_lat_one, l)
        kernel = self.fusion_query(query_out_one, query_out_two)

        return logits, kernel
    
    
class TwoStreamTransportLangFusionLatReduce(TwoStreamTransportLangFusionLat):
    """Two Stream Transport (a.k.a Place) module with lateral connections"""

    def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device):

        self.fusion_type = cfg['train']['trans_stream_fusion_type']
        super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device)
        
        del self.query_stream_one
        del self.query_stream_two
        # del self.key_stream_one
        # del self.key_stream_two

        stream_one_fcn = 'plain_resnet_reduce_lat'
        stream_one_model = models.names[stream_one_fcn]
        stream_two_fcn = 'clip_ling'
        stream_two_model = models.names[stream_two_fcn]
        
        
        
        # self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        # self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        
        self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)
        self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)

    def transport(self, in_tensor, crop, l):
        key_out_one, key_lat_one = self.key_stream_one(in_tensor)
        key_out_two = self.key_stream_two(in_tensor, key_lat_one, l)
        logits = self.fusion_key(key_out_one, key_out_two)

        query_out_one, query_lat_one = self.query_stream_one(crop)
        query_out_two = self.query_stream_two(crop, query_lat_one, l)
        kernel = self.fusion_query(query_out_one, query_out_two)

        return logits, kernel





class TwoStreamTransportLangFusionLatReduceOneStream(TwoStreamTransportLangFusionLatReduce):
    """Two Stream Transport (a.k.a Place) module with lateral connections"""

    def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device):

        self.fusion_type = cfg['train']['trans_stream_fusion_type']
        super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device)
        
        del self.query_stream_one
        del self.query_stream_two

        

    def transport(self, in_tensor, crop, l):
        key_out_one, key_lat_one = self.key_stream_one(in_tensor)
        key_out_two = self.key_stream_two(in_tensor, key_lat_one, l)
        logits = self.fusion_key(key_out_one, key_out_two)

        query_out_one, query_lat_one = self.key_stream_one(crop)
        query_out_two = self.key_stream_two(crop, query_lat_one, l)
        kernel = self.fusion_query(query_out_one, query_out_two)

        return logits, kernel




class TwoStreamTransportLangFusionLatPretrained18(TwoStreamTransportLangFusionLat):
    """Two Stream Transport (a.k.a Place) module with lateral connections"""

    def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device):

        self.fusion_type = cfg['train']['trans_stream_fusion_type']
        super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device)
        
        del self.query_stream_one
        del self.query_stream_two
        # del self.key_stream_one
        # del self.key_stream_two
        stream_one_fcn = 'pretrained_resnet18'
        stream_one_model = models.names[stream_one_fcn]
        stream_two_fcn = 'clip_ling'
        stream_two_model = models.names[stream_two_fcn]
        
        # self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        # self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess)
        
        self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)
        self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess)

    def transport(self, in_tensor, crop, l):
        key_out_one, key_lat_one = self.key_stream_one(in_tensor)
        key_out_two = self.key_stream_two(in_tensor, key_lat_one, l)
        logits = self.fusion_key(key_out_one, key_out_two)

        query_out_one, query_lat_one = self.query_stream_one(crop)
        query_out_two = self.query_stream_two(crop, query_lat_one, l)
        kernel = self.fusion_query(query_out_one, query_out_two)

        return logits, kernel