|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from cliport.models.core.attention import Attention |
|
import cliport.models as models |
|
import cliport.models.core.fusion as fusion |
|
|
|
|
|
class TwoStreamAttentionLangFusion(Attention): |
|
"""Two Stream Language-Conditioned Attention (a.k.a Pick) module.""" |
|
|
|
def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device): |
|
self.fusion_type = cfg['train']['attn_stream_fusion_type'] |
|
super().__init__(stream_fcn, in_shape, n_rotations, preprocess, cfg, device) |
|
|
|
def _build_nets(self): |
|
stream_one_fcn, stream_two_fcn = self.stream_fcn |
|
stream_one_model = models.names[stream_one_fcn] |
|
stream_two_model = models.names[stream_two_fcn] |
|
|
|
self.attn_stream_one = stream_one_model(self.in_shape, 1, self.cfg, self.device, self.preprocess) |
|
self.attn_stream_two = stream_two_model(self.in_shape, 1, self.cfg, self.device, self.preprocess) |
|
self.fusion = fusion.names[self.fusion_type](input_dim=1) |
|
|
|
print(f"Attn FCN - Stream One: {stream_one_fcn}, Stream Two: {stream_two_fcn}, Stream Fusion: {self.fusion_type}") |
|
|
|
def attend(self, x, l): |
|
x1 = self.attn_stream_one(x) |
|
x2 = self.attn_stream_two(x, l) |
|
x = self.fusion(x1, x2) |
|
return x |
|
|
|
def forward(self, inp_img, lang_goal, softmax=True): |
|
"""Forward pass.""" |
|
if len(inp_img.shape) < 4: |
|
inp_img = inp_img[None] |
|
|
|
if type(inp_img) is not torch.Tensor: |
|
in_data = inp_img |
|
in_tens = torch.from_numpy(in_data.copy()).to(dtype=torch.float, device=self.device) |
|
else: |
|
in_data = inp_img |
|
in_tens = in_data |
|
|
|
|
|
in_tens = torch.nn.functional.pad(in_tens, tuple(self.padding[[2,1,0]].reshape(-1)), mode='constant') |
|
|
|
|
|
pv = np.array(in_tens.shape[1:3]) // 2 |
|
|
|
|
|
in_tens = in_tens.permute(0, 3, 1, 2) |
|
|
|
|
|
|
|
in_tens = [in_tens] * self.n_rotations |
|
in_tens = self.rotator(in_tens, pivot=pv) |
|
|
|
|
|
logits = self.attend(torch.cat(in_tens, dim=0), lang_goal) |
|
|
|
|
|
logits = self.rotator([logits], reverse=True, pivot=pv) |
|
logits = torch.cat(logits, dim=0) |
|
c0 = self.padding[:2, 0] |
|
c1 = c0 + inp_img[0].shape[:2] |
|
logits = logits[:, :, c0[0]:c1[0], c0[1]:c1[1]] |
|
output_shape = logits.shape |
|
|
|
|
|
output = logits.reshape(len(logits), -1) |
|
if softmax: |
|
output = F.softmax(output, dim=-1) |
|
return output.view(output_shape) |
|
|
|
|
|
class TwoStreamAttentionLangFusionLat(TwoStreamAttentionLangFusion): |
|
"""Language-Conditioned Attention (a.k.a Pick) module with lateral connections.""" |
|
|
|
def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device): |
|
self.fusion_type = cfg['train']['attn_stream_fusion_type'] |
|
super().__init__(stream_fcn, in_shape, n_rotations, preprocess, cfg, device) |
|
|
|
def attend(self, x, l): |
|
x1, lat = self.attn_stream_one(x) |
|
x2 = self.attn_stream_two(x, lat, l) |
|
x = self.fusion(x1, x2) |
|
return x |
|
|
|
|
|
|
|
class TwoStreamAttentionLangFusionLatReduce(TwoStreamAttentionLangFusion): |
|
"""Language-Conditioned Attention (a.k.a Pick) module with lateral connections.""" |
|
|
|
def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device): |
|
self.fusion_type = cfg['train']['attn_stream_fusion_type'] |
|
super().__init__(stream_fcn, in_shape, n_rotations, preprocess, cfg, device) |
|
|
|
del self.attn_stream_one |
|
del self.attn_stream_two |
|
|
|
stream_one_fcn = 'plain_resnet_reduce_lat' |
|
stream_one_model = models.names[stream_one_fcn] |
|
stream_two_fcn = 'clip_ling' |
|
stream_two_model = models.names[stream_two_fcn] |
|
|
|
self.attn_stream_one = stream_one_model(self.in_shape, 1, self.cfg, self.device, self.preprocess) |
|
self.attn_stream_two = stream_two_model(self.in_shape, 1, self.cfg, self.device, self.preprocess) |
|
|
|
def attend(self, x, l): |
|
x1, lat = self.attn_stream_one(x) |
|
x2 = self.attn_stream_two(x, lat, l) |
|
x = self.fusion(x1, x2) |
|
return x |