|
Before writing the code for the task "TASK_NAME_TEMPLATE". Here are some APIs that are defined. Please confirm that you understand these APIs. |
|
|
|
""" |
|
class Task(): |
|
"""Base Task class.""" |
|
|
|
def __init__(self): |
|
self.ee = Suction |
|
self.mode = 'train' |
|
self.sixdof = False |
|
self.primitive = primitives.PickPlace() |
|
self.oracle_cams = cameras.Oracle.CONFIG |
|
|
|
# Evaluation epsilons (for pose evaluation metric). |
|
self.pos_eps = 0.01 |
|
self.rot_eps = np.deg2rad(15) |
|
|
|
# Workspace bounds. |
|
self.pix_size = 0.003125 |
|
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]]) |
|
self.zone_bounds = np.copy(self.bounds) |
|
|
|
self.goals = [] |
|
self.lang_goals = [] |
|
self.task_completed_desc = "task completed." |
|
self.progress = 0 |
|
self._rewards = 0 |
|
self.assets_root = None |
|
|
|
def reset(self, env): |
|
if not self.assets_root: |
|
raise ValueError('assets_root must be set for task, ' |
|
'call set_assets_root().') |
|
self.goals = [] |
|
self.lang_goals = [] |
|
self.progress = 0 # Task progression metric in range [0, 1]. |
|
self._rewards = 0 # Cumulative returned rewards. |
|
|
|
# ------------------------------------------------------------------------- |
|
# Oracle Agent |
|
# ------------------------------------------------------------------------- |
|
|
|
def oracle(self, env): |
|
"""Oracle agent.""" |
|
OracleAgent = collections.namedtuple('OracleAgent', ['act']) |
|
|
|
def act(obs, info): |
|
"""Calculate action.""" |
|
|
|
# Oracle uses perfect RGB-D orthographic images and segmentation masks. |
|
_, hmap, obj_mask = self.get_true_image(env) |
|
|
|
# Unpack next goal step. |
|
objs, matches, targs, replace, rotations, _, _, _ = self.goals[0] |
|
|
|
# Match objects to targets without replacement. |
|
if not replace: |
|
|
|
# Modify a copy of the match matrix. |
|
matches = matches.copy() |
|
|
|
# Ignore already matched objects. |
|
for i in range(len(objs)): |
|
object_id, (symmetry, _) = objs[i] |
|
pose = p.getBasePositionAndOrientation(object_id) |
|
targets_i = np.argwhere(matches[i, :]).reshape(-1) |
|
for j in targets_i: |
|
if self.is_match(pose, targs[j], symmetry): |
|
matches[i, :] = 0 |
|
matches[:, j] = 0 |
|
|
|
# Get objects to be picked (prioritize farthest from nearest neighbor). |
|
nn_dists = [] |
|
nn_targets = [] |
|
for i in range(len(objs)): |
|
object_id, (symmetry, _) = objs[i] |
|
xyz, _ = p.getBasePositionAndOrientation(object_id) |
|
targets_i = np.argwhere(matches[i, :]).reshape(-1) |
|
if len(targets_i) > 0: |
|
targets_xyz = np.float32([targs[j][0] for j in targets_i]) |
|
dists = np.linalg.norm( |
|
targets_xyz - np.float32(xyz).reshape(1, 3), axis=1) |
|
nn = np.argmin(dists) |
|
nn_dists.append(dists[nn]) |
|
nn_targets.append(targets_i[nn]) |
|
|
|
# Handle ignored objects. |
|
else: |
|
nn_dists.append(0) |
|
nn_targets.append(-1) |
|
order = np.argsort(nn_dists)[::-1] |
|
|
|
# Filter out matched objects. |
|
order = [i for i in order if nn_dists[i] > 0] |
|
|
|
pick_mask = None |
|
for pick_i in order: |
|
pick_mask = np.uint8(obj_mask == objs[pick_i][0]) |
|
|
|
# Erode to avoid picking on edges. |
|
# pick_mask = cv2.erode(pick_mask, np.ones((3, 3), np.uint8)) |
|
|
|
if np.sum(pick_mask) > 0: |
|
break |
|
|
|
# Trigger task reset if no object is visible. |
|
if pick_mask is None or np.sum(pick_mask) == 0: |
|
self.goals = [] |
|
self.lang_goals = [] |
|
print('Object for pick is not visible. Skipping demonstration.') |
|
return |
|
|
|
# Get picking pose. |
|
pick_prob = np.float32(pick_mask) |
|
pick_pix = utils.sample_distribution(pick_prob) |
|
# For "deterministic" demonstrations on insertion-easy, use this: |
|
# pick_pix = (160,80) |
|
pick_pos = utils.pix_to_xyz(pick_pix, hmap, |
|
self.bounds, self.pix_size) |
|
pick_pose = (np.asarray(pick_pos), np.asarray((0, 0, 0, 1))) |
|
|
|
# Get placing pose. |
|
targ_pose = targs[nn_targets[pick_i]] |
|
obj_pose = p.getBasePositionAndOrientation(objs[pick_i][0]) |
|
if not self.sixdof: |
|
obj_euler = utils.quatXYZW_to_eulerXYZ(obj_pose[1]) |
|
obj_quat = utils.eulerXYZ_to_quatXYZW((0, 0, obj_euler[2])) |
|
obj_pose = (obj_pose[0], obj_quat) |
|
world_to_pick = utils.invert(pick_pose) |
|
obj_to_pick = utils.multiply(world_to_pick, obj_pose) |
|
pick_to_obj = utils.invert(obj_to_pick) |
|
place_pose = utils.multiply(targ_pose, pick_to_obj) |
|
|
|
# Rotate end effector? |
|
if not rotations: |
|
place_pose = (place_pose[0], (0, 0, 0, 1)) |
|
|
|
place_pose = (np.asarray(place_pose[0]), np.asarray(place_pose[1])) |
|
|
|
return {'pose0': pick_pose, 'pose1': place_pose} |
|
|
|
return OracleAgent(act) |
|
|
|
# ------------------------------------------------------------------------- |
|
# Reward Function and Task Completion Metrics |
|
# ------------------------------------------------------------------------- |
|
|
|
def reward(self): |
|
"""Get delta rewards for current timestep. |
|
|
|
Returns: |
|
A tuple consisting of the scalar (delta) reward, plus `extras` |
|
dict which has extra task-dependent info from the process of |
|
computing rewards that gives us finer-grained details. Use |
|
`extras` for further data analysis. |
|
""" |
|
reward, info = 0, {} |
|
|
|
# Unpack next goal step. |
|
objs, matches, targs, _, _, metric, params, max_reward = self.goals[0] |
|
|
|
# Evaluate by matching object poses. |
|
if metric == 'pose': |
|
step_reward = 0 |
|
for i in range(len(objs)): |
|
object_id, (symmetry, _) = objs[i] |
|
pose = p.getBasePositionAndOrientation(object_id) |
|
targets_i = np.argwhere(matches[i, :]).reshape(-1) |
|
for j in targets_i: |
|
target_pose = targs[j] |
|
if self.is_match(pose, target_pose, symmetry): |
|
step_reward += max_reward / len(objs) |
|
print(f"object {i} match with target {j} rew: {step_reward}") |
|
break |
|
|
|
# Evaluate by measuring object intersection with zone. |
|
elif metric == 'zone': |
|
zone_pts, total_pts = 0, 0 |
|
obj_pts, zones = params |
|
for zone_idx, (zone_pose, zone_size) in enumerate(zones): |
|
|
|
# Count valid points in zone. |
|
for obj_idx, obj_id in enumerate(obj_pts): |
|
pts = obj_pts[obj_id] |
|
obj_pose = p.getBasePositionAndOrientation(obj_id) |
|
world_to_zone = utils.invert(zone_pose) |
|
obj_to_zone = utils.multiply(world_to_zone, obj_pose) |
|
pts = np.float32(utils.apply(obj_to_zone, pts)) |
|
if len(zone_size) > 1: |
|
valid_pts = np.logical_and.reduce([ |
|
pts[0, :] > -zone_size[0] / 2, pts[0, :] < zone_size[0] / 2, |
|
pts[1, :] > -zone_size[1] / 2, pts[1, :] < zone_size[1] / 2, |
|
pts[2, :] < self.zone_bounds[2, 1]]) |
|
|
|
# if zone_idx == matches[obj_idx].argmax(): |
|
zone_pts += np.sum(np.float32(valid_pts)) |
|
total_pts += pts.shape[1] |
|
step_reward = max_reward * (zone_pts / total_pts) |
|
|
|
# Get cumulative rewards and return delta. |
|
reward = self.progress + step_reward - self._rewards |
|
self._rewards = self.progress + step_reward |
|
|
|
# Move to next goal step if current goal step is complete. |
|
if np.abs(max_reward - step_reward) < 0.01: |
|
self.progress += max_reward # Update task progress. |
|
self.goals.pop(0) |
|
if len(self.lang_goals) > 0: |
|
self.lang_goals.pop(0) |
|
|
|
return reward, info |
|
|
|
def done(self): |
|
"""Check if the task is done or has failed. |
|
|
|
Returns: |
|
True if the episode should be considered a success, which we |
|
use for measuring successes, which is particularly helpful for tasks |
|
where one may get successes on the very last time step, e.g., getting |
|
the cloth coverage threshold on the last alllowed action. |
|
However, for bag-items-easy and bag-items-hard (which use the |
|
'bag-items' metric), it may be necessary to filter out demos that did |
|
not attain sufficiently high reward in external code. Currently, this |
|
is done in `main.py` and its ignore_this_demo() method. |
|
""" |
|
return (len(self.goals) == 0) or (self._rewards > 0.99) |
|
# return zone_done or defs_done or goal_done |
|
|
|
# ------------------------------------------------------------------------- |
|
# Environment Helper Functions |
|
# ------------------------------------------------------------------------- |
|
|
|
def is_match(self, pose0, pose1, symmetry): |
|
"""Check if pose0 and pose1 match within a threshold.""" |
|
|
|
# Get translational error. |
|
diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2]) |
|
dist_pos = np.linalg.norm(diff_pos) |
|
|
|
# Get rotational error around z-axis (account for symmetries). |
|
diff_rot = 0 |
|
if symmetry > 0: |
|
rot0 = np.array(utils.quatXYZW_to_eulerXYZ(pose0[1]))[2] |
|
rot1 = np.array(utils.quatXYZW_to_eulerXYZ(pose1[1]))[2] |
|
diff_rot = np.abs(rot0 - rot1) % symmetry |
|
if diff_rot > (symmetry / 2): |
|
diff_rot = symmetry - diff_rot |
|
|
|
return (dist_pos < self.pos_eps) and (diff_rot < self.rot_eps) |
|
|
|
def get_random_pose(self, env, obj_size): |
|
"""Get random collision-free object pose within workspace bounds.""" |
|
|
|
# Get erosion size of object in pixels. |
|
max_size = np.sqrt(obj_size[0] ** 2 + obj_size[1] ** 2) |
|
erode_size = int(np.round(max_size / self.pix_size)) |
|
|
|
_, hmap, obj_mask = self.get_true_image(env) |
|
|
|
# Randomly sample an object pose within free-space pixels. |
|
free = np.ones(obj_mask.shape, dtype=np.uint8) |
|
for obj_ids in env.obj_ids.values(): |
|
for obj_id in obj_ids: |
|
free[obj_mask == obj_id] = 0 |
|
free[0, :], free[:, 0], free[-1, :], free[:, -1] = 0, 0, 0, 0 |
|
free = cv2.erode(free, np.ones((erode_size, erode_size), np.uint8)) |
|
|
|
# if np.sum(free) == 0: |
|
# return None, None |
|
|
|
if np.sum(free) == 0: |
|
# avoid returning None, None |
|
# return None, None |
|
pix = (obj_mask.shape[0] // 2, obj_mask.shape[1] // 2) |
|
else: |
|
pix = utils.sample_distribution(np.float32(free)) |
|
pos = utils.pix_to_xyz(pix, hmap, self.bounds, self.pix_size) |
|
pos = (pos[0], pos[1], obj_size[2] / 2) |
|
theta = np.random.rand() * 2 * np.pi |
|
rot = utils.eulerXYZ_to_quatXYZW((0, 0, theta)) |
|
return pos, rot |
|
|
|
def get_lang_goal(self): |
|
if len(self.lang_goals) == 0: |
|
return self.task_completed_desc |
|
else: |
|
return self.lang_goals[0] |
|
|
|
def get_reward(self): |
|
return float(self._rewards) |
|
|
|
# ------------------------------------------------------------------------- |
|
# Helper Functions |
|
# ------------------------------------------------------------------------- |
|
|
|
def fill_template(self, template, replace): |
|
"""Read a file and replace key strings.""" |
|
full_template_path = os.path.join(self.assets_root, template) |
|
with open(full_template_path, 'r') as file: |
|
fdata = file.read() |
|
for field in replace: |
|
for i in range(len(replace[field])): |
|
fdata = fdata.replace(f'{field}{i}', str(replace[field][i])) |
|
alphabet = string.ascii_lowercase + string.digits |
|
rname = ''.join(random.choices(alphabet, k=16)) |
|
tmpdir = tempfile.gettempdir() |
|
template_filename = os.path.split(template)[-1] |
|
fname = os.path.join(tmpdir, f'{template_filename}.{rname}') |
|
with open(fname, 'w') as file: |
|
file.write(fdata) |
|
return fname |
|
|
|
def get_random_size(self, min_x, max_x, min_y, max_y, min_z, max_z): |
|
"""Get random box size.""" |
|
size = np.random.rand(3) |
|
size[0] = size[0] * (max_x - min_x) + min_x |
|
size[1] = size[1] * (max_y - min_y) + min_y |
|
size[2] = size[2] * (max_z - min_z) + min_z |
|
return tuple(size) |
|
|
|
""""" |
|
|
|
# Environment Class |
|
def add_object(self, urdf, pose, category='rigid'): |
|
"""List of (fixed, rigid, or deformable) objects in env.""" |
|
fixed_base = 1 if category == 'fixed' else 0 |
|
obj_id = pybullet_utils.load_urdf( |
|
p, |
|
os.path.join(self.assets_root, urdf), |
|
pose[0], |
|
pose[1], |
|
useFixedBase=fixed_base) |
|
self.obj_ids[category].append(obj_id) |
|
return obj_id |
|
""" |
|
|
|
========= |
|
Note that the objects need to obey physics and not collide with each other, and the object goal poses need to be above the table with lower bound x=0.25, y=-0.5 and upper bound x=0.75, y=0.5. When there are multiple objects for a multi-step pick-and-place task, there are often multiple subgoals. Once the task and environment are generated, an agent with a pick and place primitive will follow the defined goal to accomplish the tasks. |
|
|
|
Additionally, make sure you understand and summarize the ``self.goals`` variables, which has a list of 8-tuple with (objs, matches, targ_poses, replace, rotations, metric, params, step_max_reward, symmetries). |
|
- objs (List of obj_id): object ID. |
|
- matches (Binary Matrix): a binary matrix that denotes which object is matched with which target. This matrix has dimension len(objs) x len(targs). |
|
- targ_poses (List of Poses [(translation, rotation)] ): a list of target poses of tuple (translation, rotation). Don't pass in object IDs such as `bowls[i-1][0]` or `[stands[i][0]]`. |
|
- replace (Boolean): whether each object can match with one unique target. This is important if we have one target and multiple objects. If it's set to be false, then any object matching with the target will satisfy. |
|
- rotations (Boolean): whether the placement action has a rotation degree of freedom. |
|
- metric (`pose` or `zone`): `pose` or `zone` that the object needs to be transported to. Example: `pose`. |
|
- params (List of (zone_target, zone_size)): a list of (zone_target, zone_size) for each zone if the metric is `zone`. |
|
- step_max_reward (float): subgoal reward threshold. |
|
- symmetries: the radians that the object is symmetric around z axis. |
|
|
|
|