import torch import numpy as np import cliport.models as models import cliport.models.core.fusion as fusion from cliport.models.core.transport import Transport class TwoStreamTransportLangFusion(Transport): """Two Stream Transport (a.k.a Place) module""" def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device): self.fusion_type = cfg['train']['trans_stream_fusion_type'] super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device) def _build_nets(self): stream_one_fcn, stream_two_fcn = self.stream_fcn stream_one_model = models.names[stream_one_fcn] stream_two_model = models.names[stream_two_fcn] self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) self.fusion_key = fusion.names[self.fusion_type](input_dim=self.kernel_dim) self.fusion_query = fusion.names[self.fusion_type](input_dim=self.kernel_dim) print(f"Transport FCN - Stream One: {stream_one_fcn}, Stream Two: {stream_two_fcn}, Stream Fusion: {self.fusion_type}") def transport2(self, in_tensor, crop, l): logits = self.fusion_key(self.key_stream_one(in_tensor), self.key_stream_two(in_tensor, l)) kernel = self.fusion_query(self.query_stream_one(crop), self.query_stream_two(crop, l)) return logits, kernel def forward(self, inp_img, p, lang_goal, softmax=True): """Forward pass.""" if len(inp_img.shape) < 4: inp_img = inp_img[None] if type(inp_img) is not torch.Tensor: in_data = inp_img # .reshape(in_shape) in_tens = torch.from_numpy(in_data).to(dtype=torch.float, device=self.device) # [B W H 6] else: in_data = inp_img in_tens = in_data in_tensor = torch.nn.functional.pad(in_tens, tuple(self.padding[[2,1,0]].reshape(-1)), mode='constant') if type(p[0]) is not torch.Tensor: p = torch.FloatTensor(p)[None] in_tensors = [] crops = [] # this for loop is fast. for i in range(len(in_tensor)): in_tensor_i = in_tensor[[i]] # Rotation pivot. pv = p[i] + self.pad_size # Crop before network (default for Transporters CoRL 2020). hcrop = self.pad_size in_tensor_i = in_tensor_i.permute(0, 3, 1, 2) crop = [in_tensor_i] * self.n_rotations crop = self.rotator(crop, pivot=pv.float()) crop = torch.cat(crop, dim=0) crop = crop[:, :, int(pv[0]-hcrop):int(pv[0]+hcrop), int(pv[1]-hcrop):int(pv[1]+hcrop)] in_tensors.append(in_tensor_i) crops.append(crop) logits, kernels = self.transport(torch.cat(in_tensors,dim=0), torch.cat(crops, dim=0), lang_goal) #crops.shape:(8, 36, 6, 64, 64) res = self.correlate(logits, kernels, softmax) return res class TwoStreamTransportLangFusionLat(TwoStreamTransportLangFusion): """Two Stream Transport (a.k.a Place) module with lateral connections""" def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device): self.fusion_type = cfg['train']['trans_stream_fusion_type'] super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device) def transport(self, in_tensor, crop, l): key_out_one, key_lat_one = self.key_stream_one(in_tensor) key_out_two = self.key_stream_two(in_tensor, key_lat_one, l) logits = self.fusion_key(key_out_one, key_out_two) query_out_one, query_lat_one = self.query_stream_one(crop) query_out_two = self.query_stream_two(crop, query_lat_one, l) kernel = self.fusion_query(query_out_one, query_out_two) return logits, kernel class TwoStreamTransportLangFusionLatReduce(TwoStreamTransportLangFusionLat): """Two Stream Transport (a.k.a Place) module with lateral connections""" def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device): self.fusion_type = cfg['train']['trans_stream_fusion_type'] super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device) del self.query_stream_one del self.query_stream_two # del self.key_stream_one # del self.key_stream_two stream_one_fcn = 'plain_resnet_reduce_lat' stream_one_model = models.names[stream_one_fcn] stream_two_fcn = 'clip_ling' stream_two_model = models.names[stream_two_fcn] # self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) # self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) def transport(self, in_tensor, crop, l): key_out_one, key_lat_one = self.key_stream_one(in_tensor) key_out_two = self.key_stream_two(in_tensor, key_lat_one, l) logits = self.fusion_key(key_out_one, key_out_two) query_out_one, query_lat_one = self.query_stream_one(crop) query_out_two = self.query_stream_two(crop, query_lat_one, l) kernel = self.fusion_query(query_out_one, query_out_two) return logits, kernel class TwoStreamTransportLangFusionLatReduceOneStream(TwoStreamTransportLangFusionLatReduce): """Two Stream Transport (a.k.a Place) module with lateral connections""" def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device): self.fusion_type = cfg['train']['trans_stream_fusion_type'] super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device) del self.query_stream_one del self.query_stream_two def transport(self, in_tensor, crop, l): key_out_one, key_lat_one = self.key_stream_one(in_tensor) key_out_two = self.key_stream_two(in_tensor, key_lat_one, l) logits = self.fusion_key(key_out_one, key_out_two) query_out_one, query_lat_one = self.key_stream_one(crop) query_out_two = self.key_stream_two(crop, query_lat_one, l) kernel = self.fusion_query(query_out_one, query_out_two) return logits, kernel class TwoStreamTransportLangFusionLatPretrained18(TwoStreamTransportLangFusionLat): """Two Stream Transport (a.k.a Place) module with lateral connections""" def __init__(self, stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device): self.fusion_type = cfg['train']['trans_stream_fusion_type'] super().__init__(stream_fcn, in_shape, n_rotations, crop_size, preprocess, cfg, device) del self.query_stream_one del self.query_stream_two # del self.key_stream_one # del self.key_stream_two stream_one_fcn = 'pretrained_resnet18' stream_one_model = models.names[stream_one_fcn] stream_two_fcn = 'clip_ling' stream_two_model = models.names[stream_two_fcn] # self.key_stream_one = stream_one_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) # self.key_stream_two = stream_two_model(self.in_shape, self.output_dim, self.cfg, self.device, self.preprocess) self.query_stream_one = stream_one_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) self.query_stream_two = stream_two_model(self.kernel_shape, self.kernel_dim, self.cfg, self.device, self.preprocess) def transport(self, in_tensor, crop, l): key_out_one, key_lat_one = self.key_stream_one(in_tensor) key_out_two = self.key_stream_two(in_tensor, key_lat_one, l) logits = self.fusion_key(key_out_one, key_out_two) query_out_one, query_lat_one = self.query_stream_one(crop) query_out_two = self.query_stream_two(crop, query_lat_one, l) kernel = self.fusion_query(query_out_one, query_out_two) return logits, kernel