mhassanch commited on
Commit
e8a739b
·
1 Parent(s): 235b103

add model card

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - geospatial
4
+ - geobase
5
+ - building-footprint-segmentation
6
+ - building-detection
7
+ ---
8
+ | <img src="https://upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png" width="28" height="28"> | [@geobase-js/geoai](https://www.npmjs.com/package/@geobase-js/geoai) |
9
+ |---|---|
10
+
11
+
12
+
13
+ > `task = building-footprint-segmentation`
14
+
15
+ ### 🛠 Model Purpose
16
+ This model is part of the **[@geobase-js/geoai](https://github.com/geobase-ai/geoai)** javascript library.
17
+
18
+ **GeoAi** enables geospatial AI inference **directly in the browser or Node.js** without requiring a heavy backend.
19
+
20
+ **GeoAi** pipeline accepts **geospatial polygons** as input (in GeoJSON format) and outputs results as a **GeoJSON FeatureCollection**, ready for use with libraries like **Leaflet** and **Mapbox GL**.
21
+
22
+ <video controls autoplay loop width="1024" height="720" src="https://geobase-docs.s3.amazonaws.com/geobase-ai-assets/building-footprint-segmentation.mp4"></video>
23
+
24
+ ---
25
+ ### 🚀 Demo
26
+
27
+ Explore the model in action with the interactive [Demo](https://docs.geobase.app/geoai-live/tasks/building-footprint-segmentation).
28
+
29
+ ### 📦 Model Information
30
+ - **Architecture**: U-Net–style Convolutional Neural Network (CNN)
31
+ - **Source Model**: [gunayk3/building_footprint_segmentation](https://huggingface.co/spaces/gunayk3/building_footprint_segmentation)
32
+ - **Quantization**: Yes
33
+ ---
34
+
35
+ ### 💡 Example Usage
36
+
37
+ ```javascript
38
+ import { geoai } from "@geobase-js/geoai";
39
+
40
+ // Example polygon (GeoJSON)
41
+ const polygon = {
42
+ type: "Feature",
43
+ properties: {},
44
+ geometry: {
45
+ coordinates: [
46
+ [
47
+ [-117.42351735397804, 47.659839523657155],
48
+ [-117.42351735397804, 47.6533360375098],
49
+ [-117.41165191515506, 47.6533360375098],
50
+ [-117.41165191515506, 47.659839523657155],
51
+ [-117.42351735397804, 47.659839523657155]
52
+ ],
53
+ ],
54
+ type: "Polygon",
55
+ },
56
+ } as GeoJSON.Feature;
57
+
58
+ // Initialize pipeline
59
+ const pipeline = await geoai.pipeline(
60
+ [{ task: "building_footprint_segmentation" }],
61
+ providerParams
62
+ );
63
+
64
+ // Run detection
65
+ const result = await pipeline.inference({
66
+ inputs: { polygon }
67
+ });
68
+
69
+ // Sample output format
70
+ // {
71
+ // "detections": {
72
+ // "type": "FeatureCollection",
73
+ // "features": [
74
+ // {
75
+ // "type": "Feature",
76
+ // "properties": {
77
+ // "confidence": 0.8438083529472351
78
+ // },
79
+ // "geometry": {
80
+ // "type": "Polygon",
81
+ // "coordinates": [
82
+ // [
83
+ // [-117.41771164648438, 47.650790343749996],
84
+ // [-117.41766873046875, 47.650790343749996],
85
+ // [-117.41762581445313,47.650790343749996],
86
+ // ...
87
+ // [-117.41771164648438, 47.650790343749996]
88
+ // ]
89
+ // ]
90
+ // }
91
+ // },
92
+ // {"type": 'Feature', "properties": {…}, "geometry": {…}},
93
+ // {"type": 'Feature', "properties": {…}, "geometry": {…}},
94
+ // ]
95
+ // },
96
+ // "geoRawImage": GeoRawImage {data: Uint8ClampedArray(1048576), width: 512, height: 512, channels: 4, bounds: {…}, …}
97
+ // }
98
+
99
+ ```
100
+ ### 📖 Documentation & Demo
101
+
102
+ - GeoBase Docs: https://docs.geobase.app/geoai
103
+ - NPM Package: https://www.npmjs.com/package/@geobase-js/geoai
104
+ - Demo Playground: https://docs.geobase.app/geoai-live/tasks/building-footprint-segmentation
105
+ - GitHub Repo: https://github.com/decision-labs/geobase-ai.js