Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +33 -21
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 246.61 +/- 25.03
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc6694be3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc6694be430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc6694be4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc6694be550>", "_build": "<function ActorCriticPolicy._build at 0x7fc6694be5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc6694be670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc6694be700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc6694be790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc6694be820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc6694be8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc6694be940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc6694c0090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86708e35e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86708e3670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86708e3700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86708e3790>", "_build": "<function ActorCriticPolicy._build at 0x7f86708e3820>", "forward": "<function ActorCriticPolicy.forward at 0x7f86708e38b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86708e3940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86708e39d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86708e3a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86708e3af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86708e3b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86708dade0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670447363571418581, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMZ9Ij7f2Es/ulGJPLaVZr5eMWg9DRIKPQAAAAAAAAAAZsUGPp5GhD2tHeC9peAkvqV9jbx9jBK9AAAAAAAAAABGADS+DkWcvH56a71EGz888i8NPv91F70AAIA/AACAP2DhHr6UX5G8whMZPlfOq73uRgA+xRuKPgAAgD8AAIA/2v/mPTSI/D4+vxK+HEJYviuFGr2u7dQ7AAAAAAAAAACTyTG+yM+ZPk5ERj1mUZq+ADS6vXnOAj4AAAAAAAAAANp41D0pkCa6ceeutzwNnLJVV5i6E3PQNgAAAAAAAIA/aOqCvmchN73OGSG78w75uZrWnj4QmFw6AACAPwAAgD/mD0K9XEdSukafFzvudUo3PMoLuxObAboAAIA/AACAP0DFLr5EMH0/IgFuvjpvxr5O+lW+q0gKPQAAAAAAAAAAM/RbPdKJoLtBDKO7M96gPPPJ57yeJYg9AACAPwAAgD9Ntt49KXA6umLT4rrzSr+1JPgoOCkOBDoAAAAAAACAP0CQtL32GHi6gzBtOUtbCLbvjOi6nJMCtQAAAAAAAIA/zTxtPFapiz56S4W8metxvuZWGL2Nh2A8AAAAAAAAAADNkyE9Y6SLPq75x72ySmS+XMMYPEfuKDsAAAAAAAAAAE0Kvj2ufYS6/o4sO5qC6LQiqPE5H7FHugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZJY9CWxFcUCUhpRSlIwBbJRNkAGMAXSUR0CZ6n642CNCdX2UKGgGaAloD0MI0XZM3ZXccECUhpRSlGgVTV0BaBZHQJnrhyZKFqV1fZQoaAZoCWgPQwiwjA3dbC1uQJSGlFKUaBVNQQFoFkdAme1H6MzdlHV9lChoBmgJaA9DCIdREDw+um9AlIaUUpRoFU10AWgWR0CZ7a1TBInSdX2UKGgGaAloD0MIEK6AQj3dbkCUhpRSlGgVTWIBaBZHQJntsUqQRwt1fZQoaAZoCWgPQwivXkVGBw5uQJSGlFKUaBVNZQJoFkdAme6BkZrHl3V9lChoBmgJaA9DCGvylNX0K3JAlIaUUpRoFU2SAWgWR0CZ762C/XXidX2UKGgGaAloD0MIndmu0MewcECUhpRSlGgVTVQCaBZHQJnxg/yGzrx1fZQoaAZoCWgPQwjvVMA9D6JwQJSGlFKUaBVNEAJoFkdAmfRxfrrxAnV9lChoBmgJaA9DCJFgqpm1jm9AlIaUUpRoFU2hAmgWR0CZ+Bow22ofdX2UKGgGaAloD0MITFKZYs6jcECUhpRSlGgVTWUBaBZHQJn5z6P8yet1fZQoaAZoCWgPQwjM64hDtuJvQJSGlFKUaBVNZAFoFkdAmfsmvW6K+HV9lChoBmgJaA9DCNGwGHWtOHFAlIaUUpRoFU3KAWgWR0CZ/vD0163RdX2UKGgGaAloD0MIzEOmfAgNbkCUhpRSlGgVTWsCaBZHQJoDNG3F1jl1fZQoaAZoCWgPQwjY8zXL5ShwQJSGlFKUaBVNugJoFkdAmgSVcpsoD3V9lChoBmgJaA9DCHIVi98UTG9AlIaUUpRoFU1aAWgWR0CaGHwi7kGSdX2UKGgGaAloD0MI9wDdlzOdcECUhpRSlGgVTQADaBZHQJoZKKgqVhV1fZQoaAZoCWgPQwiwH2KDhWdwQJSGlFKUaBVN3AFoFkdAmhpdQfp2U3V9lChoBmgJaA9DCBjrG5icE3BAlIaUUpRoFU2lAWgWR0CaGsxrzoU0dX2UKGgGaAloD0MI5zbhXpl5bkCUhpRSlGgVTf0BaBZHQJobOFajesR1fZQoaAZoCWgPQwi1GDxMe35yQJSGlFKUaBVN2wFoFkdAmhubE1l5GHV9lChoBmgJaA9DCG2q7pFNsnBAlIaUUpRoFU3cAWgWR0CaHC6FuejEdX2UKGgGaAloD0MI0H6kiMzccECUhpRSlGgVTfcBaBZHQJocbtRekYZ1fZQoaAZoCWgPQwgwL8A+Ou9wQJSGlFKUaBVNqwFoFkdAmh3NqtYCAHV9lChoBmgJaA9DCK3B+6ocoXFAlIaUUpRoFU1VAWgWR0CaHdc/dIoWdX2UKGgGaAloD0MIcD51rFJmcECUhpRSlGgVTUMBaBZHQJoeIYoAn2J1fZQoaAZoCWgPQwhOXmQC/n1xQJSGlFKUaBVNJgJoFkdAmh4yCe2/jHV9lChoBmgJaA9DCE3YfjJGq3FAlIaUUpRoFU3KAWgWR0CaIHQgLZzxdX2UKGgGaAloD0MIoDTUKOQfcUCUhpRSlGgVTVkBaBZHQJohI5FPSD11fZQoaAZoCWgPQwjPZ0C9mahrQJSGlFKUaBVNKwFoFkdAmiUlB+nZTXV9lChoBmgJaA9DCLFtUWYDMm9AlIaUUpRoFU1HAWgWR0CaJ/FW4mTldX2UKGgGaAloD0MIcF0xIzwecECUhpRSlGgVTY0BaBZHQJoowZCOWB11fZQoaAZoCWgPQwgHJjeKrPlvQJSGlFKUaBVNTgFoFkdAmijnEVFhHHV9lChoBmgJaA9DCFn4+lqXcXBAlIaUUpRoFU1gAWgWR0CaKpsyi22HdX2UKGgGaAloD0MIbhlwltKWckCUhpRSlGgVTVoBaBZHQJoqqp71Iy11fZQoaAZoCWgPQwi3f2WlSeJuQJSGlFKUaBVNjwFoFkdAmistjPOY6XV9lChoBmgJaA9DCOhNRSpMcHBAlIaUUpRoFU1AAWgWR0CaK2YYBNmEdX2UKGgGaAloD0MIF5zB369ja0CUhpRSlGgVTXMBaBZHQJouArtmcvx1fZQoaAZoCWgPQwjIt3cN+lpFQJSGlFKUaBVNCAFoFkdAmi4tGRV6vHV9lChoBmgJaA9DCAsNxLKZCXJAlIaUUpRoFU30AWgWR0CaLou8K5TZdX2UKGgGaAloD0MIm8qisItMbkCUhpRSlGgVTaIBaBZHQJowQcLjPv91fZQoaAZoCWgPQwilvcEXJrVCQJSGlFKUaBVL4WgWR0CaMGmknCwbdX2UKGgGaAloD0MIcXFUbuI2cECUhpRSlGgVTUkCaBZHQJoxF3MY/FB1fZQoaAZoCWgPQwgvhQfN7kZxQJSGlFKUaBVNggFoFkdAmjH9+kP+XXV9lChoBmgJaA9DCPEr1nARYG5AlIaUUpRoFU30AWgWR0CaMzARChN/dX2UKGgGaAloD0MIvyuC/22ocECUhpRSlGgVTSkBaBZHQJo2xy3kPtl1fZQoaAZoCWgPQwhvgm+avpZuQJSGlFKUaBVNUQFoFkdAmjb3bEgnt3V9lChoBmgJaA9DCMrhk06k0G1AlIaUUpRoFU0kAWgWR0CaNxjebd8BdX2UKGgGaAloD0MIJ4kl5e71bUCUhpRSlGgVTYIBaBZHQJo5L4Irvst1fZQoaAZoCWgPQwjeAZ608GNwQJSGlFKUaBVNmAFoFkdAmjlm7Bfrr3V9lChoBmgJaA9DCBgjEoWWt0lAlIaUUpRoFUveaBZHQJo54BBAv+R1fZQoaAZoCWgPQwgpIy4ADfFwQJSGlFKUaBVNPQFoFkdAmjsAUQCjlHV9lChoBmgJaA9DCImbU8kALHJAlIaUUpRoFU2VAWgWR0CaO15TqB3BdX2UKGgGaAloD0MIahX9oRkKb0CUhpRSlGgVTSsBaBZHQJo8Ondfsu51fZQoaAZoCWgPQwhauKzC5qZtQJSGlFKUaBVNfgFoFkdAmj0R/y5I6XV9lChoBmgJaA9DCCjVPh3PhnFAlIaUUpRoFU3CAWgWR0CaP99itq59dX2UKGgGaAloD0MI4UVfQZpZXECUhpRSlGgVTegDaBZHQJpAmoS+QEJ1fZQoaAZoCWgPQwhj78UX7VBxQJSGlFKUaBVNVwFoFkdAmkEcjiXIEXV9lChoBmgJaA9DCPlJtU+HIHJAlIaUUpRoFU2PAWgWR0CaQfVvMr3CdX2UKGgGaAloD0MIDybFxyewRkCUhpRSlGgVS9loFkdAmldev+wTunV9lChoBmgJaA9DCAe3tYXn83BAlIaUUpRoFU10AWgWR0CaWYPmxMWXdX2UKGgGaAloD0MIpbxWQvdhcUCUhpRSlGgVTUkBaBZHQJpaXlYEGJN1fZQoaAZoCWgPQwhsdqT6Ti5xQJSGlFKUaBVNiQFoFkdAmlrYTXarWHV9lChoBmgJaA9DCL4R3bMuhGtAlIaUUpRoFU1lAWgWR0CaW23aSLZSdX2UKGgGaAloD0MIigRTzaxNcECUhpRSlGgVTScBaBZHQJpb9a7mMfl1fZQoaAZoCWgPQwidR8X/HR1vQJSGlFKUaBVNfAFoFkdAml0dkFwDNnV9lChoBmgJaA9DCFqEYisoi3BAlIaUUpRoFU1hAWgWR0CaXSgm7aqTdX2UKGgGaAloD0MIB7e1hae8cUCUhpRSlGgVTVMBaBZHQJpekan75211fZQoaAZoCWgPQwhlx0YgHhZwQJSGlFKUaBVNLwFoFkdAml/xRQ79ynV9lChoBmgJaA9DCBptVRIZcnJAlIaUUpRoFU0mAWgWR0CaYEnIhhYvdX2UKGgGaAloD0MIHD9UGrFvb0CUhpRSlGgVTTIBaBZHQJphLd30PH11fZQoaAZoCWgPQwiaXfdWJIZvQJSGlFKUaBVNMwFoFkdAmmH3eizsyHV9lChoBmgJaA9DCB5ssdsnlnBAlIaUUpRoFU0kAWgWR0CaY1/cWTHKdX2UKGgGaAloD0MIllrvN1pgbkCUhpRSlGgVTRcBaBZHQJpleMuOCGx1fZQoaAZoCWgPQwg6Pe/GAmNiQJSGlFKUaBVN6ANoFkdAmmeuy3Td+HV9lChoBmgJaA9DCBDn4QRm5XBAlIaUUpRoFU1OAWgWR0CaaOpnYg7pdX2UKGgGaAloD0MI0bLuH4tGbECUhpRSlGgVTSsBaBZHQJppJsyi22J1fZQoaAZoCWgPQwhRiIBDqLtvQJSGlFKUaBVNaQFoFkdAmmmNl7MPjHV9lChoBmgJaA9DCEQ0uoNYpnFAlIaUUpRoFU1bAWgWR0Caa1oK2KEWdX2UKGgGaAloD0MI7+U+OUrzcUCUhpRSlGgVTbkBaBZHQJpsAv0yxiZ1fZQoaAZoCWgPQwjWi6GcaFtuQJSGlFKUaBVNRAFoFkdAmmwZKWcBl3V9lChoBmgJaA9DCH2VfOwuqVRAlIaUUpRoFU3oA2gWR0CabKCx/ustdX2UKGgGaAloD0MIKji8IOJscECUhpRSlGgVTSUBaBZHQJptoOG0u151fZQoaAZoCWgPQwh4l4v4TjRwQJSGlFKUaBVNPgFoFkdAmm2hTn7pFHV9lChoBmgJaA9DCLoQqz8CE3NAlIaUUpRoFU1PAWgWR0CabecJMQEqdX2UKGgGaAloD0MIuVM6WH8tb0CUhpRSlGgVTXYDaBZHQJpu6hAWznl1fZQoaAZoCWgPQwjP+SmOgxtyQJSGlFKUaBVNgAFoFkdAmnGfOpsGgXV9lChoBmgJaA9DCM7hWu3hSW5AlIaUUpRoFU09AWgWR0CacmcLjPv8dX2UKGgGaAloD0MI3KFhMSoRcECUhpRSlGgVTRMBaBZHQJp0gBjnV5N1fZQoaAZoCWgPQwh9CRUcHjlxQJSGlFKUaBVNRQFoFkdAmnTmL1mJ33V9lChoBmgJaA9DCB0AcVevaEBAlIaUUpRoFUvuaBZHQJp1J2zOX3R1fZQoaAZoCWgPQwiciH5t/ZtrQJSGlFKUaBVNLgFoFkdAmnVFeKKpDXV9lChoBmgJaA9DCJ0N+WcGH0hAlIaUUpRoFUvaaBZHQJp15telbeN1fZQoaAZoCWgPQwh0YaQXtQNwQJSGlFKUaBVNJAFoFkdAmnakONHYpXV9lChoBmgJaA9DCIF2hxQDcHFAlIaUUpRoFU1EAWgWR0CaeSKFIuoQdX2UKGgGaAloD0MIFeXS+IWacUCUhpRSlGgVTVABaBZHQJp5IK0D2al1fZQoaAZoCWgPQwgujspN1OFsQJSGlFKUaBVNJgFoFkdAmnlS7sfJWHV9lChoBmgJaA9DCK+196kqmGxAlIaUUpRoFU0VAWgWR0Caebvx6OYIdX2UKGgGaAloD0MIbLBwkibccECUhpRSlGgVTYUBaBZHQJp8n5+H8CR1fZQoaAZoCWgPQwiS6ju/6LRwQJSGlFKUaBVNLgFoFkdAmn2g6ltTDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4057303f621fb2ba0f3fbcfc692229cb982d9a561e383477c4687421647c1e0a
|
3 |
+
size 147342
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,28 +42,40 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
-
"_last_obs":
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"_last_original_obs": null,
|
60 |
"_episode_num": 0,
|
61 |
"use_sde": false,
|
62 |
"sde_sample_freq": -1,
|
63 |
-
"_current_progress_remaining":
|
64 |
-
"ep_info_buffer":
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"n_steps": 1024,
|
68 |
"gamma": 0.999,
|
69 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f86708e35e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86708e3670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86708e3700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86708e3790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f86708e3820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f86708e38b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86708e3940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f86708e39d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86708e3a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86708e3af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86708e3b80>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f86708dade0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670447363571418581,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMZ9Ij7f2Es/ulGJPLaVZr5eMWg9DRIKPQAAAAAAAAAAZsUGPp5GhD2tHeC9peAkvqV9jbx9jBK9AAAAAAAAAABGADS+DkWcvH56a71EGz888i8NPv91F70AAIA/AACAP2DhHr6UX5G8whMZPlfOq73uRgA+xRuKPgAAgD8AAIA/2v/mPTSI/D4+vxK+HEJYviuFGr2u7dQ7AAAAAAAAAACTyTG+yM+ZPk5ERj1mUZq+ADS6vXnOAj4AAAAAAAAAANp41D0pkCa6ceeutzwNnLJVV5i6E3PQNgAAAAAAAIA/aOqCvmchN73OGSG78w75uZrWnj4QmFw6AACAPwAAgD/mD0K9XEdSukafFzvudUo3PMoLuxObAboAAIA/AACAP0DFLr5EMH0/IgFuvjpvxr5O+lW+q0gKPQAAAAAAAAAAM/RbPdKJoLtBDKO7M96gPPPJ57yeJYg9AACAPwAAgD9Ntt49KXA6umLT4rrzSr+1JPgoOCkOBDoAAAAAAACAP0CQtL32GHi6gzBtOUtbCLbvjOi6nJMCtQAAAAAAAIA/zTxtPFapiz56S4W8metxvuZWGL2Nh2A8AAAAAAAAAADNkyE9Y6SLPq75x72ySmS+XMMYPEfuKDsAAAAAAAAAAE0Kvj2ufYS6/o4sO5qC6LQiqPE5H7FHugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZJY9CWxFcUCUhpRSlIwBbJRNkAGMAXSUR0CZ6n642CNCdX2UKGgGaAloD0MI0XZM3ZXccECUhpRSlGgVTV0BaBZHQJnrhyZKFqV1fZQoaAZoCWgPQwiwjA3dbC1uQJSGlFKUaBVNQQFoFkdAme1H6MzdlHV9lChoBmgJaA9DCIdREDw+um9AlIaUUpRoFU10AWgWR0CZ7a1TBInSdX2UKGgGaAloD0MIEK6AQj3dbkCUhpRSlGgVTWIBaBZHQJntsUqQRwt1fZQoaAZoCWgPQwivXkVGBw5uQJSGlFKUaBVNZQJoFkdAme6BkZrHl3V9lChoBmgJaA9DCGvylNX0K3JAlIaUUpRoFU2SAWgWR0CZ762C/XXidX2UKGgGaAloD0MIndmu0MewcECUhpRSlGgVTVQCaBZHQJnxg/yGzrx1fZQoaAZoCWgPQwjvVMA9D6JwQJSGlFKUaBVNEAJoFkdAmfRxfrrxAnV9lChoBmgJaA9DCJFgqpm1jm9AlIaUUpRoFU2hAmgWR0CZ+Bow22ofdX2UKGgGaAloD0MITFKZYs6jcECUhpRSlGgVTWUBaBZHQJn5z6P8yet1fZQoaAZoCWgPQwjM64hDtuJvQJSGlFKUaBVNZAFoFkdAmfsmvW6K+HV9lChoBmgJaA9DCNGwGHWtOHFAlIaUUpRoFU3KAWgWR0CZ/vD0163RdX2UKGgGaAloD0MIzEOmfAgNbkCUhpRSlGgVTWsCaBZHQJoDNG3F1jl1fZQoaAZoCWgPQwjY8zXL5ShwQJSGlFKUaBVNugJoFkdAmgSVcpsoD3V9lChoBmgJaA9DCHIVi98UTG9AlIaUUpRoFU1aAWgWR0CaGHwi7kGSdX2UKGgGaAloD0MI9wDdlzOdcECUhpRSlGgVTQADaBZHQJoZKKgqVhV1fZQoaAZoCWgPQwiwH2KDhWdwQJSGlFKUaBVN3AFoFkdAmhpdQfp2U3V9lChoBmgJaA9DCBjrG5icE3BAlIaUUpRoFU2lAWgWR0CaGsxrzoU0dX2UKGgGaAloD0MI5zbhXpl5bkCUhpRSlGgVTf0BaBZHQJobOFajesR1fZQoaAZoCWgPQwi1GDxMe35yQJSGlFKUaBVN2wFoFkdAmhubE1l5GHV9lChoBmgJaA9DCG2q7pFNsnBAlIaUUpRoFU3cAWgWR0CaHC6FuejEdX2UKGgGaAloD0MI0H6kiMzccECUhpRSlGgVTfcBaBZHQJocbtRekYZ1fZQoaAZoCWgPQwgwL8A+Ou9wQJSGlFKUaBVNqwFoFkdAmh3NqtYCAHV9lChoBmgJaA9DCK3B+6ocoXFAlIaUUpRoFU1VAWgWR0CaHdc/dIoWdX2UKGgGaAloD0MIcD51rFJmcECUhpRSlGgVTUMBaBZHQJoeIYoAn2J1fZQoaAZoCWgPQwhOXmQC/n1xQJSGlFKUaBVNJgJoFkdAmh4yCe2/jHV9lChoBmgJaA9DCE3YfjJGq3FAlIaUUpRoFU3KAWgWR0CaIHQgLZzxdX2UKGgGaAloD0MIoDTUKOQfcUCUhpRSlGgVTVkBaBZHQJohI5FPSD11fZQoaAZoCWgPQwjPZ0C9mahrQJSGlFKUaBVNKwFoFkdAmiUlB+nZTXV9lChoBmgJaA9DCLFtUWYDMm9AlIaUUpRoFU1HAWgWR0CaJ/FW4mTldX2UKGgGaAloD0MIcF0xIzwecECUhpRSlGgVTY0BaBZHQJoowZCOWB11fZQoaAZoCWgPQwgHJjeKrPlvQJSGlFKUaBVNTgFoFkdAmijnEVFhHHV9lChoBmgJaA9DCFn4+lqXcXBAlIaUUpRoFU1gAWgWR0CaKpsyi22HdX2UKGgGaAloD0MIbhlwltKWckCUhpRSlGgVTVoBaBZHQJoqqp71Iy11fZQoaAZoCWgPQwi3f2WlSeJuQJSGlFKUaBVNjwFoFkdAmistjPOY6XV9lChoBmgJaA9DCOhNRSpMcHBAlIaUUpRoFU1AAWgWR0CaK2YYBNmEdX2UKGgGaAloD0MIF5zB369ja0CUhpRSlGgVTXMBaBZHQJouArtmcvx1fZQoaAZoCWgPQwjIt3cN+lpFQJSGlFKUaBVNCAFoFkdAmi4tGRV6vHV9lChoBmgJaA9DCAsNxLKZCXJAlIaUUpRoFU30AWgWR0CaLou8K5TZdX2UKGgGaAloD0MIm8qisItMbkCUhpRSlGgVTaIBaBZHQJowQcLjPv91fZQoaAZoCWgPQwilvcEXJrVCQJSGlFKUaBVL4WgWR0CaMGmknCwbdX2UKGgGaAloD0MIcXFUbuI2cECUhpRSlGgVTUkCaBZHQJoxF3MY/FB1fZQoaAZoCWgPQwgvhQfN7kZxQJSGlFKUaBVNggFoFkdAmjH9+kP+XXV9lChoBmgJaA9DCPEr1nARYG5AlIaUUpRoFU30AWgWR0CaMzARChN/dX2UKGgGaAloD0MIvyuC/22ocECUhpRSlGgVTSkBaBZHQJo2xy3kPtl1fZQoaAZoCWgPQwhvgm+avpZuQJSGlFKUaBVNUQFoFkdAmjb3bEgnt3V9lChoBmgJaA9DCMrhk06k0G1AlIaUUpRoFU0kAWgWR0CaNxjebd8BdX2UKGgGaAloD0MIJ4kl5e71bUCUhpRSlGgVTYIBaBZHQJo5L4Irvst1fZQoaAZoCWgPQwjeAZ608GNwQJSGlFKUaBVNmAFoFkdAmjlm7Bfrr3V9lChoBmgJaA9DCBgjEoWWt0lAlIaUUpRoFUveaBZHQJo54BBAv+R1fZQoaAZoCWgPQwgpIy4ADfFwQJSGlFKUaBVNPQFoFkdAmjsAUQCjlHV9lChoBmgJaA9DCImbU8kALHJAlIaUUpRoFU2VAWgWR0CaO15TqB3BdX2UKGgGaAloD0MIahX9oRkKb0CUhpRSlGgVTSsBaBZHQJo8Ondfsu51fZQoaAZoCWgPQwhauKzC5qZtQJSGlFKUaBVNfgFoFkdAmj0R/y5I6XV9lChoBmgJaA9DCCjVPh3PhnFAlIaUUpRoFU3CAWgWR0CaP99itq59dX2UKGgGaAloD0MI4UVfQZpZXECUhpRSlGgVTegDaBZHQJpAmoS+QEJ1fZQoaAZoCWgPQwhj78UX7VBxQJSGlFKUaBVNVwFoFkdAmkEcjiXIEXV9lChoBmgJaA9DCPlJtU+HIHJAlIaUUpRoFU2PAWgWR0CaQfVvMr3CdX2UKGgGaAloD0MIDybFxyewRkCUhpRSlGgVS9loFkdAmldev+wTunV9lChoBmgJaA9DCAe3tYXn83BAlIaUUpRoFU10AWgWR0CaWYPmxMWXdX2UKGgGaAloD0MIpbxWQvdhcUCUhpRSlGgVTUkBaBZHQJpaXlYEGJN1fZQoaAZoCWgPQwhsdqT6Ti5xQJSGlFKUaBVNiQFoFkdAmlrYTXarWHV9lChoBmgJaA9DCL4R3bMuhGtAlIaUUpRoFU1lAWgWR0CaW23aSLZSdX2UKGgGaAloD0MIigRTzaxNcECUhpRSlGgVTScBaBZHQJpb9a7mMfl1fZQoaAZoCWgPQwidR8X/HR1vQJSGlFKUaBVNfAFoFkdAml0dkFwDNnV9lChoBmgJaA9DCFqEYisoi3BAlIaUUpRoFU1hAWgWR0CaXSgm7aqTdX2UKGgGaAloD0MIB7e1hae8cUCUhpRSlGgVTVMBaBZHQJpekan75211fZQoaAZoCWgPQwhlx0YgHhZwQJSGlFKUaBVNLwFoFkdAml/xRQ79ynV9lChoBmgJaA9DCBptVRIZcnJAlIaUUpRoFU0mAWgWR0CaYEnIhhYvdX2UKGgGaAloD0MIHD9UGrFvb0CUhpRSlGgVTTIBaBZHQJphLd30PH11fZQoaAZoCWgPQwiaXfdWJIZvQJSGlFKUaBVNMwFoFkdAmmH3eizsyHV9lChoBmgJaA9DCB5ssdsnlnBAlIaUUpRoFU0kAWgWR0CaY1/cWTHKdX2UKGgGaAloD0MIllrvN1pgbkCUhpRSlGgVTRcBaBZHQJpleMuOCGx1fZQoaAZoCWgPQwg6Pe/GAmNiQJSGlFKUaBVN6ANoFkdAmmeuy3Td+HV9lChoBmgJaA9DCBDn4QRm5XBAlIaUUpRoFU1OAWgWR0CaaOpnYg7pdX2UKGgGaAloD0MI0bLuH4tGbECUhpRSlGgVTSsBaBZHQJppJsyi22J1fZQoaAZoCWgPQwhRiIBDqLtvQJSGlFKUaBVNaQFoFkdAmmmNl7MPjHV9lChoBmgJaA9DCEQ0uoNYpnFAlIaUUpRoFU1bAWgWR0Caa1oK2KEWdX2UKGgGaAloD0MI7+U+OUrzcUCUhpRSlGgVTbkBaBZHQJpsAv0yxiZ1fZQoaAZoCWgPQwjWi6GcaFtuQJSGlFKUaBVNRAFoFkdAmmwZKWcBl3V9lChoBmgJaA9DCH2VfOwuqVRAlIaUUpRoFU3oA2gWR0CabKCx/ustdX2UKGgGaAloD0MIKji8IOJscECUhpRSlGgVTSUBaBZHQJptoOG0u151fZQoaAZoCWgPQwh4l4v4TjRwQJSGlFKUaBVNPgFoFkdAmm2hTn7pFHV9lChoBmgJaA9DCLoQqz8CE3NAlIaUUpRoFU1PAWgWR0CabecJMQEqdX2UKGgGaAloD0MIuVM6WH8tb0CUhpRSlGgVTXYDaBZHQJpu6hAWznl1fZQoaAZoCWgPQwjP+SmOgxtyQJSGlFKUaBVNgAFoFkdAmnGfOpsGgXV9lChoBmgJaA9DCM7hWu3hSW5AlIaUUpRoFU09AWgWR0CacmcLjPv8dX2UKGgGaAloD0MI3KFhMSoRcECUhpRSlGgVTRMBaBZHQJp0gBjnV5N1fZQoaAZoCWgPQwh9CRUcHjlxQJSGlFKUaBVNRQFoFkdAmnTmL1mJ33V9lChoBmgJaA9DCB0AcVevaEBAlIaUUpRoFUvuaBZHQJp1J2zOX3R1fZQoaAZoCWgPQwiciH5t/ZtrQJSGlFKUaBVNLgFoFkdAmnVFeKKpDXV9lChoBmgJaA9DCJ0N+WcGH0hAlIaUUpRoFUvaaBZHQJp15telbeN1fZQoaAZoCWgPQwh0YaQXtQNwQJSGlFKUaBVNJAFoFkdAmnakONHYpXV9lChoBmgJaA9DCIF2hxQDcHFAlIaUUpRoFU1EAWgWR0CaeSKFIuoQdX2UKGgGaAloD0MIFeXS+IWacUCUhpRSlGgVTVABaBZHQJp5IK0D2al1fZQoaAZoCWgPQwgujspN1OFsQJSGlFKUaBVNJgFoFkdAmnlS7sfJWHV9lChoBmgJaA9DCK+196kqmGxAlIaUUpRoFU0VAWgWR0Caebvx6OYIdX2UKGgGaAloD0MIbLBwkibccECUhpRSlGgVTYUBaBZHQJp8n5+H8CR1fZQoaAZoCWgPQwiS6ju/6LRwQJSGlFKUaBVNLgFoFkdAmn2g6ltTDXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:866b216e0814e36ee8bb0d58a14c4798157410a20db9ab2ff5376bb871fc7b5d
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbacc0094bcbc19c56ac07d44edbba195930821740cd78c0f2269b7ef569a8eb
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 246.6096256958052, "std_reward": 25.029669966937853, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T21:41:49.331475"}
|