ghazikhanihamed commited on
Commit
c5ef90c
·
1 Parent(s): ecef635

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: ElnaggarLab/ankh-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: TooT-PLM-P2S
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # TooT-PLM-P2S
15
+
16
+ This model is a fine-tuned version of [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.2604
19
+ - Q3 Accuracy: 0.5425
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.001
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 16
41
+ - seed: 7
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - total_train_batch_size: 8
45
+ - total_eval_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Q3 Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:-----------:|
55
+ | 0.5495 | 0.35 | 500 | 0.2746 | 0.5425 |
56
+ | 0.2733 | 0.71 | 1000 | 0.2604 | 0.5425 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.1+cu117
63
+ - Datasets 2.12.0
64
+ - Tokenizers 0.13.2