--- license: cc-by-nc-sa-4.0 base_model: ElnaggarLab/ankh-base tags: - generated_from_trainer model-index: - name: TooT-PLM-P2S results: [] --- # TooT-PLM-P2S This model is a fine-tuned version of [ElnaggarLab/ankh-base](https://huggingface.co/ElnaggarLab/ankh-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1575 - Q3 Accuracy: 0.5314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 7 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Q3 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------:| | 0.6057 | 1.0 | 318 | 0.2338 | 0.4211 | | 0.214 | 2.0 | 636 | 0.1712 | 0.6755 | | 0.2068 | 3.0 | 954 | 0.1697 | 0.6628 | | 0.2178 | 4.0 | 1272 | 0.1755 | 0.3646 | | 0.1815 | 5.0 | 1590 | 0.1678 | 0.6628 | | 0.1768 | 6.0 | 1908 | 0.1667 | 0.6628 | | 0.1682 | 7.0 | 2226 | 0.1650 | 0.6628 | | 0.1626 | 8.0 | 2544 | 0.1693 | 0.6527 | | 0.1609 | 9.0 | 2862 | 0.1594 | 0.6566 | | 0.1577 | 10.0 | 3180 | 0.1575 | 0.5314 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0 - Datasets 2.14.5 - Tokenizers 0.14.1