File size: 1,737 Bytes
5f2c085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c43630
 
5f2c085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c43630
 
 
 
 
 
 
 
 
5f2c085
 
 
 
 
 
c50ac29
5f2c085
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: NousResearch/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: Llama-2-7b-chat-hf-formula-peft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-2-7b-chat-hf-formula-peft

This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0978

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.0878        | 1.43  | 10   | 3.5298          |
| 2.7514        | 2.86  | 20   | 2.5999          |
| 1.854         | 4.29  | 30   | 2.2461          |
| 1.4716        | 5.71  | 40   | 2.1421          |
| 1.3602        | 7.14  | 50   | 2.1016          |
| 1.2029        | 8.57  | 60   | 2.0985          |
| 1.1427        | 10.0  | 70   | 2.0978          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1