Francesco commited on
Commit
1668309
·
1 Parent(s): 40d61d1

commit files to HF hub

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # resnext50_32x4d
2
+ Implementation of ResNetXt proposed in [\"Aggregated Residual
3
+ Transformation for Deep Neural
4
+ Networks\"](https://arxiv.org/pdf/1611.05431.pdf)
5
+
6
+ Create a default model
7
+
8
+ ``` python
9
+ ResNetXt.resnext50_32x4d()
10
+ ResNetXt.resnext101_32x8d()
11
+ # create a resnetxt18_32x4d
12
+ ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4)
13
+ ```
14
+
15
+ Examples:
16
+
17
+ : ``` python
18
+ # change activation
19
+ ResNetXt.resnext50_32x4d(activation = nn.SELU)
20
+ # change number of classes (default is 1000 )
21
+ ResNetXt.resnext50_32x4d(n_classes=100)
22
+ # pass a different block
23
+ ResNetXt.resnext50_32x4d(block=SENetBasicBlock)
24
+ # change the initial convolution
25
+ model = ResNetXt.resnext50_32x4d
26
+ model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3)
27
+ # store each feature
28
+ x = torch.rand((1, 3, 224, 224))
29
+ model = ResNetXt.resnext50_32x4d()
30
+ # first call .features, this will activate the forward hooks and tells the model you'll like to get the features
31
+ model.encoder.features
32
+ model(torch.randn((1,3,224,224)))
33
+ # get the features from the encoder
34
+ features = model.encoder.features
35
+ print([x.shape for x in features])
36
+ #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])]
37
+ ```
38
+
39
+