tomascufaro
commited on
Commit
•
36107b3
1
Parent(s):
28d0b9a
copy repo from tomascufaro
Browse files- README.md +212 -0
- added_tokens.json +1 -0
- all_results.json +14 -0
- checkpoint-70500/config.json +115 -0
- checkpoint-70500/optimizer.pt +3 -0
- checkpoint-70500/preprocessor_config.json +9 -0
- checkpoint-70500/pytorch_model.bin +3 -0
- checkpoint-70500/rng_state.pth +3 -0
- checkpoint-70500/scaler.pt +3 -0
- checkpoint-70500/scheduler.pt +3 -0
- checkpoint-70500/trainer_state.json +0 -0
- checkpoint-70500/training_args.bin +3 -0
- checkpoint-71000/config.json +115 -0
- checkpoint-71000/optimizer.pt +3 -0
- checkpoint-71000/preprocessor_config.json +9 -0
- checkpoint-71000/pytorch_model.bin +3 -0
- checkpoint-71000/rng_state.pth +3 -0
- checkpoint-71000/scaler.pt +3 -0
- checkpoint-71000/scheduler.pt +3 -0
- checkpoint-71000/trainer_state.json +0 -0
- checkpoint-71000/training_args.bin +3 -0
- checkpoint-71500/config.json +115 -0
- checkpoint-71500/optimizer.pt +3 -0
- checkpoint-71500/preprocessor_config.json +9 -0
- checkpoint-71500/pytorch_model.bin +3 -0
- checkpoint-71500/rng_state.pth +3 -0
- checkpoint-71500/scaler.pt +3 -0
- checkpoint-71500/scheduler.pt +3 -0
- checkpoint-71500/trainer_state.json +0 -0
- checkpoint-71500/training_args.bin +3 -0
- config.json +115 -0
- eval.py +157 -0
- eval_results.json +9 -0
- log_mozilla-foundation_common_voice_8_0_es_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_es_test_targets.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_es_validation_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_es_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_8_0_es_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_8_0_es_validation_eval_results.txt +2 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +35 -0
- run_speech_recognition_ctc.py +737 -0
- run_speech_recognition_ctc_bnb.py +804 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- es
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
- "es"
|
10 |
+
- "robust-speech-event"
|
11 |
+
datasets:
|
12 |
+
- common_voice
|
13 |
+
model-index:
|
14 |
+
- name: xls-r-es-test
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
19 |
+
should probably proofread and complete it, then remove this comment. -->
|
20 |
+
|
21 |
+
# xls-r-es-test
|
22 |
+
|
23 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset.
|
24 |
+
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 0.1304
|
26 |
+
- WER: 0.1261
|
27 |
+
- CER: 0.035
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 7.5e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 4
|
51 |
+
- total_train_batch_size: 32
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_steps: 2000
|
55 |
+
- num_epochs: 10.0
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
61 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
62 |
+
| 2.9613 | 0.07 | 500 | 2.9647 | 1.0 |
|
63 |
+
| 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 |
|
64 |
+
| 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 |
|
65 |
+
| 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 |
|
66 |
+
| 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 |
|
67 |
+
| 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 |
|
68 |
+
| 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 |
|
69 |
+
| 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 |
|
70 |
+
| 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 |
|
71 |
+
| 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 |
|
72 |
+
| 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 |
|
73 |
+
| 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 |
|
74 |
+
| 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 |
|
75 |
+
| 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 |
|
76 |
+
| 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 |
|
77 |
+
| 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 |
|
78 |
+
| 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 |
|
79 |
+
| 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 |
|
80 |
+
| 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 |
|
81 |
+
| 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 |
|
82 |
+
| 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 |
|
83 |
+
| 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 |
|
84 |
+
| 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 |
|
85 |
+
| 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 |
|
86 |
+
| 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 |
|
87 |
+
| 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 |
|
88 |
+
| 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 |
|
89 |
+
| 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 |
|
90 |
+
| 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 |
|
91 |
+
| 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 |
|
92 |
+
| 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 |
|
93 |
+
| 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 |
|
94 |
+
| 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 |
|
95 |
+
| 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 |
|
96 |
+
| 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 |
|
97 |
+
| 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 |
|
98 |
+
| 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 |
|
99 |
+
| 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 |
|
100 |
+
| 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 |
|
101 |
+
| 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 |
|
102 |
+
| 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 |
|
103 |
+
| 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 |
|
104 |
+
| 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 |
|
105 |
+
| 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 |
|
106 |
+
| 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 |
|
107 |
+
| 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 |
|
108 |
+
| 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 |
|
109 |
+
| 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 |
|
110 |
+
| 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 |
|
111 |
+
| 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 |
|
112 |
+
| 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 |
|
113 |
+
| 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 |
|
114 |
+
| 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 |
|
115 |
+
| 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 |
|
116 |
+
| 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 |
|
117 |
+
| 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 |
|
118 |
+
| 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 |
|
119 |
+
| 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 |
|
120 |
+
| 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 |
|
121 |
+
| 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 |
|
122 |
+
| 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 |
|
123 |
+
| 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 |
|
124 |
+
| 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 |
|
125 |
+
| 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 |
|
126 |
+
| 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 |
|
127 |
+
| 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 |
|
128 |
+
| 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 |
|
129 |
+
| 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 |
|
130 |
+
| 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 |
|
131 |
+
| 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 |
|
132 |
+
| 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 |
|
133 |
+
| 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 |
|
134 |
+
| 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 |
|
135 |
+
| 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 |
|
136 |
+
| 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 |
|
137 |
+
| 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 |
|
138 |
+
| 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 |
|
139 |
+
| 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 |
|
140 |
+
| 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 |
|
141 |
+
| 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 |
|
142 |
+
| 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 |
|
143 |
+
| 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 |
|
144 |
+
| 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 |
|
145 |
+
| 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 |
|
146 |
+
| 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 |
|
147 |
+
| 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 |
|
148 |
+
| 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 |
|
149 |
+
| 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 |
|
150 |
+
| 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 |
|
151 |
+
| 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 |
|
152 |
+
| 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 |
|
153 |
+
| 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 |
|
154 |
+
| 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 |
|
155 |
+
| 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 |
|
156 |
+
| 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 |
|
157 |
+
| 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 |
|
158 |
+
| 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 |
|
159 |
+
| 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 |
|
160 |
+
| 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 |
|
161 |
+
| 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 |
|
162 |
+
| 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 |
|
163 |
+
| 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 |
|
164 |
+
| 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 |
|
165 |
+
| 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 |
|
166 |
+
| 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 |
|
167 |
+
| 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 |
|
168 |
+
| 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 |
|
169 |
+
| 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 |
|
170 |
+
| 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 |
|
171 |
+
| 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 |
|
172 |
+
| 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 |
|
173 |
+
| 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 |
|
174 |
+
| 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 |
|
175 |
+
| 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 |
|
176 |
+
| 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 |
|
177 |
+
| 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 |
|
178 |
+
| 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 |
|
179 |
+
| 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 |
|
180 |
+
| 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 |
|
181 |
+
| 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 |
|
182 |
+
| 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 |
|
183 |
+
| 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 |
|
184 |
+
| 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 |
|
185 |
+
| 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 |
|
186 |
+
| 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 |
|
187 |
+
| 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 |
|
188 |
+
| 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 |
|
189 |
+
| 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 |
|
190 |
+
| 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 |
|
191 |
+
| 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 |
|
192 |
+
| 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 |
|
193 |
+
| 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 |
|
194 |
+
| 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 |
|
195 |
+
| 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 |
|
196 |
+
| 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 |
|
197 |
+
| 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 |
|
198 |
+
| 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 |
|
199 |
+
| 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 |
|
200 |
+
| 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 |
|
201 |
+
| 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 |
|
202 |
+
| 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 |
|
203 |
+
| 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 |
|
204 |
+
| 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 |
|
205 |
+
|
206 |
+
|
207 |
+
### Framework versions
|
208 |
+
|
209 |
+
- Transformers 4.17.0.dev0
|
210 |
+
- Pytorch 1.10.2+cu102
|
211 |
+
- Datasets 1.18.3
|
212 |
+
- Tokenizers 0.11.0
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 34, "</s>": 35}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_loss": 0.13038970530033112,
|
4 |
+
"eval_runtime": 829.1884,
|
5 |
+
"eval_samples": 15440,
|
6 |
+
"eval_samples_per_second": 18.621,
|
7 |
+
"eval_steps_per_second": 2.328,
|
8 |
+
"eval_wer": 0.12614800858667752,
|
9 |
+
"train_loss": 0.8738376914307662,
|
10 |
+
"train_runtime": 268775.0566,
|
11 |
+
"train_samples": 229440,
|
12 |
+
"train_samples_per_second": 8.537,
|
13 |
+
"train_steps_per_second": 0.267
|
14 |
+
}
|
checkpoint-70500/config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_channel_length": 10,
|
63 |
+
"mask_channel_min_space": 1,
|
64 |
+
"mask_channel_other": 0.0,
|
65 |
+
"mask_channel_prob": 0.0,
|
66 |
+
"mask_channel_selection": "static",
|
67 |
+
"mask_feature_length": 64,
|
68 |
+
"mask_feature_min_masks": 0,
|
69 |
+
"mask_feature_prob": 0.25,
|
70 |
+
"mask_time_length": 10,
|
71 |
+
"mask_time_min_masks": 2,
|
72 |
+
"mask_time_min_space": 1,
|
73 |
+
"mask_time_other": 0.0,
|
74 |
+
"mask_time_prob": 0.75,
|
75 |
+
"mask_time_selection": "static",
|
76 |
+
"model_type": "wav2vec2",
|
77 |
+
"num_adapter_layers": 3,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_codevector_groups": 2,
|
80 |
+
"num_codevectors_per_group": 320,
|
81 |
+
"num_conv_pos_embedding_groups": 16,
|
82 |
+
"num_conv_pos_embeddings": 128,
|
83 |
+
"num_feat_extract_layers": 7,
|
84 |
+
"num_hidden_layers": 24,
|
85 |
+
"num_negatives": 100,
|
86 |
+
"output_hidden_size": 1024,
|
87 |
+
"pad_token_id": 33,
|
88 |
+
"proj_codevector_dim": 768,
|
89 |
+
"tdnn_dilation": [
|
90 |
+
1,
|
91 |
+
2,
|
92 |
+
3,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
"tdnn_dim": [
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
512,
|
100 |
+
512,
|
101 |
+
1500
|
102 |
+
],
|
103 |
+
"tdnn_kernel": [
|
104 |
+
5,
|
105 |
+
3,
|
106 |
+
3,
|
107 |
+
1,
|
108 |
+
1
|
109 |
+
],
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.17.0.dev0",
|
112 |
+
"use_weighted_layer_sum": false,
|
113 |
+
"vocab_size": 36,
|
114 |
+
"xvector_output_dim": 512
|
115 |
+
}
|
checkpoint-70500/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47a02c311c6d4acd312ad5496b5163fa4de0cef279fded334076f045a08fef71
|
3 |
+
size 625441705
|
checkpoint-70500/preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
checkpoint-70500/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6288a1bc25c7f7b2037d71bf0e0c1e5f8b3810fcf35a0cc84e9b281bc73949ba
|
3 |
+
size 1262071281
|
checkpoint-70500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16195a6451d36ddc8b5fcfaa9eb0734ba3cb4e5d72dcf40491718947afcfc21a
|
3 |
+
size 14567
|
checkpoint-70500/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8aa1005e9cffde08c96316b6177ad9bfcf3e109a09807974dca4303ffc79176
|
3 |
+
size 559
|
checkpoint-70500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4878d36d0a3143d31e8d70b00241f38f521125c72becf0f1f46c3a1f86ce8352
|
3 |
+
size 623
|
checkpoint-70500/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-70500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61af16ecf3f3e38206ca59d2abf9c3872cfd4e4f38971380d8bed24a74daad7d
|
3 |
+
size 3055
|
checkpoint-71000/config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_channel_length": 10,
|
63 |
+
"mask_channel_min_space": 1,
|
64 |
+
"mask_channel_other": 0.0,
|
65 |
+
"mask_channel_prob": 0.0,
|
66 |
+
"mask_channel_selection": "static",
|
67 |
+
"mask_feature_length": 64,
|
68 |
+
"mask_feature_min_masks": 0,
|
69 |
+
"mask_feature_prob": 0.25,
|
70 |
+
"mask_time_length": 10,
|
71 |
+
"mask_time_min_masks": 2,
|
72 |
+
"mask_time_min_space": 1,
|
73 |
+
"mask_time_other": 0.0,
|
74 |
+
"mask_time_prob": 0.75,
|
75 |
+
"mask_time_selection": "static",
|
76 |
+
"model_type": "wav2vec2",
|
77 |
+
"num_adapter_layers": 3,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_codevector_groups": 2,
|
80 |
+
"num_codevectors_per_group": 320,
|
81 |
+
"num_conv_pos_embedding_groups": 16,
|
82 |
+
"num_conv_pos_embeddings": 128,
|
83 |
+
"num_feat_extract_layers": 7,
|
84 |
+
"num_hidden_layers": 24,
|
85 |
+
"num_negatives": 100,
|
86 |
+
"output_hidden_size": 1024,
|
87 |
+
"pad_token_id": 33,
|
88 |
+
"proj_codevector_dim": 768,
|
89 |
+
"tdnn_dilation": [
|
90 |
+
1,
|
91 |
+
2,
|
92 |
+
3,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
"tdnn_dim": [
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
512,
|
100 |
+
512,
|
101 |
+
1500
|
102 |
+
],
|
103 |
+
"tdnn_kernel": [
|
104 |
+
5,
|
105 |
+
3,
|
106 |
+
3,
|
107 |
+
1,
|
108 |
+
1
|
109 |
+
],
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.17.0.dev0",
|
112 |
+
"use_weighted_layer_sum": false,
|
113 |
+
"vocab_size": 36,
|
114 |
+
"xvector_output_dim": 512
|
115 |
+
}
|
checkpoint-71000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bff2547a0d95e50b19fde82898cb9b16efd386633a5b8850b9165395329e057
|
3 |
+
size 625441705
|
checkpoint-71000/preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
checkpoint-71000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e99d50f1fa2d84154fde43dac8860f190bad6ed3e1924bfcacb14150d1de5966
|
3 |
+
size 1262071281
|
checkpoint-71000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97f1ee927a6f18a282804da2ad73c504b6f37ec114596d451e4826ae48a72697
|
3 |
+
size 14567
|
checkpoint-71000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0fa447ce75544c22980a80903eb85ec2a42fdeb1abc8a1b5a5bd6e10c09b83e
|
3 |
+
size 559
|
checkpoint-71000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba620a5a4ef7914840abb2769d3561ca0e741367894940b97d888d0c6b4f2aa3
|
3 |
+
size 623
|
checkpoint-71000/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-71000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61af16ecf3f3e38206ca59d2abf9c3872cfd4e4f38971380d8bed24a74daad7d
|
3 |
+
size 3055
|
checkpoint-71500/config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_channel_length": 10,
|
63 |
+
"mask_channel_min_space": 1,
|
64 |
+
"mask_channel_other": 0.0,
|
65 |
+
"mask_channel_prob": 0.0,
|
66 |
+
"mask_channel_selection": "static",
|
67 |
+
"mask_feature_length": 64,
|
68 |
+
"mask_feature_min_masks": 0,
|
69 |
+
"mask_feature_prob": 0.25,
|
70 |
+
"mask_time_length": 10,
|
71 |
+
"mask_time_min_masks": 2,
|
72 |
+
"mask_time_min_space": 1,
|
73 |
+
"mask_time_other": 0.0,
|
74 |
+
"mask_time_prob": 0.75,
|
75 |
+
"mask_time_selection": "static",
|
76 |
+
"model_type": "wav2vec2",
|
77 |
+
"num_adapter_layers": 3,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_codevector_groups": 2,
|
80 |
+
"num_codevectors_per_group": 320,
|
81 |
+
"num_conv_pos_embedding_groups": 16,
|
82 |
+
"num_conv_pos_embeddings": 128,
|
83 |
+
"num_feat_extract_layers": 7,
|
84 |
+
"num_hidden_layers": 24,
|
85 |
+
"num_negatives": 100,
|
86 |
+
"output_hidden_size": 1024,
|
87 |
+
"pad_token_id": 33,
|
88 |
+
"proj_codevector_dim": 768,
|
89 |
+
"tdnn_dilation": [
|
90 |
+
1,
|
91 |
+
2,
|
92 |
+
3,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
"tdnn_dim": [
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
512,
|
100 |
+
512,
|
101 |
+
1500
|
102 |
+
],
|
103 |
+
"tdnn_kernel": [
|
104 |
+
5,
|
105 |
+
3,
|
106 |
+
3,
|
107 |
+
1,
|
108 |
+
1
|
109 |
+
],
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.17.0.dev0",
|
112 |
+
"use_weighted_layer_sum": false,
|
113 |
+
"vocab_size": 36,
|
114 |
+
"xvector_output_dim": 512
|
115 |
+
}
|
checkpoint-71500/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9a1e38dad1e2483e267f3026a959de17baa64ef7c5a1cb1e8255dcac08ebf5d
|
3 |
+
size 625441705
|
checkpoint-71500/preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
checkpoint-71500/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74552bd7b8157ca706aa3e198982daab293d03bb6cce08c9062f08b41f0f7b48
|
3 |
+
size 1262071281
|
checkpoint-71500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f15e452de37bdd2c2324cf1ed19c5fb9d48fddca22bdf522d58abb6a1edd30f
|
3 |
+
size 14567
|
checkpoint-71500/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bae09b9c1fcdd03cf16eeecd7db55e390678977b40359da069ac343cf9f745a6
|
3 |
+
size 559
|
checkpoint-71500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b408326a7d0881f3a7694ebe5e2383eedd9eb758558a68e1de5d9597629fd6
|
3 |
+
size 623
|
checkpoint-71500/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-71500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61af16ecf3f3e38206ca59d2abf9c3872cfd4e4f38971380d8bed24a74daad7d
|
3 |
+
size 3055
|
config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_channel_length": 10,
|
63 |
+
"mask_channel_min_space": 1,
|
64 |
+
"mask_channel_other": 0.0,
|
65 |
+
"mask_channel_prob": 0.0,
|
66 |
+
"mask_channel_selection": "static",
|
67 |
+
"mask_feature_length": 64,
|
68 |
+
"mask_feature_min_masks": 0,
|
69 |
+
"mask_feature_prob": 0.25,
|
70 |
+
"mask_time_length": 10,
|
71 |
+
"mask_time_min_masks": 2,
|
72 |
+
"mask_time_min_space": 1,
|
73 |
+
"mask_time_other": 0.0,
|
74 |
+
"mask_time_prob": 0.75,
|
75 |
+
"mask_time_selection": "static",
|
76 |
+
"model_type": "wav2vec2",
|
77 |
+
"num_adapter_layers": 3,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_codevector_groups": 2,
|
80 |
+
"num_codevectors_per_group": 320,
|
81 |
+
"num_conv_pos_embedding_groups": 16,
|
82 |
+
"num_conv_pos_embeddings": 128,
|
83 |
+
"num_feat_extract_layers": 7,
|
84 |
+
"num_hidden_layers": 24,
|
85 |
+
"num_negatives": 100,
|
86 |
+
"output_hidden_size": 1024,
|
87 |
+
"pad_token_id": 33,
|
88 |
+
"proj_codevector_dim": 768,
|
89 |
+
"tdnn_dilation": [
|
90 |
+
1,
|
91 |
+
2,
|
92 |
+
3,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
"tdnn_dim": [
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
512,
|
100 |
+
512,
|
101 |
+
1500
|
102 |
+
],
|
103 |
+
"tdnn_kernel": [
|
104 |
+
5,
|
105 |
+
3,
|
106 |
+
3,
|
107 |
+
1,
|
108 |
+
1
|
109 |
+
],
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.17.0.dev0",
|
112 |
+
"use_weighted_layer_sum": false,
|
113 |
+
"vocab_size": 36,
|
114 |
+
"xvector_output_dim": 512
|
115 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
def clean_batch(text):
|
50 |
+
text = re.sub("([^A-Za-zÀ-ú ])", '', text).lower()
|
51 |
+
text = re.sub("([ß|þ|ð|æ])",'',text)
|
52 |
+
return text
|
53 |
+
|
54 |
+
def homologate_accents(text):
|
55 |
+
text=re.sub("([â|ã|ä|å|à])","a",text)
|
56 |
+
text=re.sub("([é|ê|ë])","e",text)
|
57 |
+
text=re.sub("([ì|î|ï])","i",text)
|
58 |
+
text=re.sub("([ö|õ|ô|ò|ø])","o",text)
|
59 |
+
text=re.sub("ù","u",text)
|
60 |
+
text=re.sub("ç","c",text)
|
61 |
+
return text
|
62 |
+
|
63 |
+
def normalize_text(text: str) -> str:
|
64 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
65 |
+
|
66 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
67 |
+
text = text.lower()
|
68 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
69 |
+
|
70 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
71 |
+
# note that order is important here!
|
72 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
73 |
+
|
74 |
+
for t in token_sequences_to_ignore:
|
75 |
+
text = " ".join(text.split(t))
|
76 |
+
|
77 |
+
#added functions
|
78 |
+
text = homologate_accents(text)
|
79 |
+
text = clean_batch(text)
|
80 |
+
return text
|
81 |
+
|
82 |
+
|
83 |
+
def main(args):
|
84 |
+
# load dataset
|
85 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
86 |
+
|
87 |
+
# for testing: only process the first two examples as a test
|
88 |
+
#dataset = dataset.select(range(15))
|
89 |
+
# vocab = [character for character in "aábcdeéfghiíjklmnñoópqrstuúüvwxyz·-."]
|
90 |
+
|
91 |
+
# dataset = dataset.filter(
|
92 |
+
# lambda example: not any((c not in vocab) for c in example),
|
93 |
+
# input_columns='sentence',
|
94 |
+
# desc="remove examples with weird characters"
|
95 |
+
# )
|
96 |
+
# load processor
|
97 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
98 |
+
sampling_rate = feature_extractor.sampling_rate
|
99 |
+
|
100 |
+
# resample audio
|
101 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
102 |
+
|
103 |
+
# load eval pipeline
|
104 |
+
if args.device is None:
|
105 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
106 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
107 |
+
|
108 |
+
# map function to decode audio
|
109 |
+
def map_to_pred(batch):
|
110 |
+
prediction = asr(
|
111 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
112 |
+
)
|
113 |
+
batch["prediction"] = prediction["text"]
|
114 |
+
batch["target"] = normalize_text(batch["sentence"])
|
115 |
+
return batch
|
116 |
+
|
117 |
+
# run inference on all examples
|
118 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
119 |
+
# compute and log_results
|
120 |
+
# do not change function below
|
121 |
+
log_results(result, args)
|
122 |
+
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
parser = argparse.ArgumentParser()
|
126 |
+
|
127 |
+
parser.add_argument(
|
128 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--dataset",
|
132 |
+
type=str,
|
133 |
+
required=True,
|
134 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
138 |
+
)
|
139 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
140 |
+
parser.add_argument(
|
141 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--device",
|
151 |
+
type=int,
|
152 |
+
default=None,
|
153 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
154 |
+
)
|
155 |
+
args = parser.parse_args()
|
156 |
+
|
157 |
+
main(args)
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_loss": 0.13038970530033112,
|
4 |
+
"eval_runtime": 829.1884,
|
5 |
+
"eval_samples": 15440,
|
6 |
+
"eval_samples_per_second": 18.621,
|
7 |
+
"eval_steps_per_second": 2.328,
|
8 |
+
"eval_wer": 0.12614800858667752
|
9 |
+
}
|
log_mozilla-foundation_common_voice_8_0_es_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_es_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_es_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_es_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_8_0_es_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.12618083227750462
|
2 |
+
CER: 0.035028395923434555
|
mozilla-foundation_common_voice_8_0_es_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.10670647680293982
|
2 |
+
CER: 0.0284079393233586
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aec613a008767c6bbd9ffa13109e9c965582aedbf6728b3f9ab578ab6371fb9
|
3 |
+
size 1262071281
|
run.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc_bnb.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_8_0" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
|
4 |
+
--dataset_config_name="es" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="10" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--evaluation_strategy="steps" \
|
15 |
+
--text_column_name="sentence" \
|
16 |
+
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
|
17 |
+
--save_steps="500" \
|
18 |
+
--eval_steps="500" \
|
19 |
+
--logging_steps="100" \
|
20 |
+
--layerdrop="0.0" \
|
21 |
+
--activation_dropout="0.1" \
|
22 |
+
--save_total_limit="3" \
|
23 |
+
--freeze_feature_encoder \
|
24 |
+
--feat_proj_dropout="0.0" \
|
25 |
+
--mask_time_prob="0.75" \
|
26 |
+
--mask_time_length="10" \
|
27 |
+
--mask_feature_prob="0.25" \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--hub_model_id "tomascufaro/xls-r-es-test" \
|
30 |
+
--gradient_checkpointing \
|
31 |
+
--use_auth_token \
|
32 |
+
--fp16 \
|
33 |
+
--group_by_length \
|
34 |
+
--do_train --do_eval \
|
35 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train+validation'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
)
|
322 |
+
|
323 |
+
# take union of all unique characters in each dataset
|
324 |
+
vocab_set = functools.reduce(
|
325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
326 |
+
)
|
327 |
+
|
328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
329 |
+
|
330 |
+
# replace white space with delimiter token
|
331 |
+
if word_delimiter_token is not None:
|
332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
333 |
+
del vocab_dict[" "]
|
334 |
+
|
335 |
+
# add unk and pad token
|
336 |
+
if unk_token is not None:
|
337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
338 |
+
|
339 |
+
if pad_token is not None:
|
340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
341 |
+
|
342 |
+
return vocab_dict
|
343 |
+
|
344 |
+
|
345 |
+
def main():
|
346 |
+
# See all possible arguments in src/transformers/training_args.py
|
347 |
+
# or by passing the --help flag to this script.
|
348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
349 |
+
|
350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
353 |
+
# let's parse it to get our arguments.
|
354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
355 |
+
else:
|
356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
357 |
+
|
358 |
+
# Detecting last checkpoint.
|
359 |
+
last_checkpoint = None
|
360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
363 |
+
raise ValueError(
|
364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
365 |
+
"Use --overwrite_output_dir to overcome."
|
366 |
+
)
|
367 |
+
elif last_checkpoint is not None:
|
368 |
+
logger.info(
|
369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
371 |
+
)
|
372 |
+
|
373 |
+
# Setup logging
|
374 |
+
logging.basicConfig(
|
375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
378 |
+
)
|
379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
380 |
+
|
381 |
+
# Log on each process the small summary:
|
382 |
+
logger.warning(
|
383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
385 |
+
)
|
386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
387 |
+
if is_main_process(training_args.local_rank):
|
388 |
+
transformers.utils.logging.set_verbosity_info()
|
389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
390 |
+
|
391 |
+
# Set seed before initializing model.
|
392 |
+
set_seed(training_args.seed)
|
393 |
+
|
394 |
+
# 1. First, let's load the dataset
|
395 |
+
raw_datasets = DatasetDict()
|
396 |
+
|
397 |
+
if training_args.do_train:
|
398 |
+
raw_datasets["train"] = load_dataset(
|
399 |
+
data_args.dataset_name,
|
400 |
+
data_args.dataset_config_name,
|
401 |
+
split=data_args.train_split_name,
|
402 |
+
use_auth_token=data_args.use_auth_token,
|
403 |
+
)
|
404 |
+
|
405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
406 |
+
raise ValueError(
|
407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
413 |
+
raise ValueError(
|
414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
417 |
+
)
|
418 |
+
|
419 |
+
if data_args.max_train_samples is not None:
|
420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
421 |
+
|
422 |
+
if training_args.do_eval:
|
423 |
+
raw_datasets["eval"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.eval_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.max_eval_samples is not None:
|
431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
432 |
+
|
433 |
+
# 2. We remove some special characters from the datasets
|
434 |
+
# that make training complicated and do not help in transcribing the speech
|
435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
+
# that could be easily picked up by the model
|
437 |
+
chars_to_ignore_regex = (
|
438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
+
)
|
440 |
+
text_column_name = data_args.text_column_name
|
441 |
+
|
442 |
+
def remove_special_characters(batch):
|
443 |
+
if chars_to_ignore_regex is not None:
|
444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
445 |
+
else:
|
446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
447 |
+
return batch
|
448 |
+
|
449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
450 |
+
raw_datasets = raw_datasets.map(
|
451 |
+
remove_special_characters,
|
452 |
+
remove_columns=[text_column_name],
|
453 |
+
desc="remove special characters from datasets",
|
454 |
+
)
|
455 |
+
|
456 |
+
# save special tokens for tokenizer
|
457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
458 |
+
unk_token = data_args.unk_token
|
459 |
+
pad_token = data_args.pad_token
|
460 |
+
|
461 |
+
# 3. Next, let's load the config as we might need it to create
|
462 |
+
# the tokenizer
|
463 |
+
# load config
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
466 |
+
)
|
467 |
+
|
468 |
+
# 4. Next, if no tokenizer file is defined,
|
469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
470 |
+
# the training and evaluation datasets
|
471 |
+
# We need to make sure that only first rank saves vocabulary
|
472 |
+
# make sure all processes wait until vocab is created
|
473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
474 |
+
tokenizer_kwargs = {}
|
475 |
+
if tokenizer_name_or_path is None:
|
476 |
+
# save vocab in training output dir
|
477 |
+
tokenizer_name_or_path = training_args.output_dir
|
478 |
+
|
479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
480 |
+
|
481 |
+
with training_args.main_process_first():
|
482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
483 |
+
os.remove(vocab_file)
|
484 |
+
|
485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
486 |
+
if not os.path.isfile(vocab_file):
|
487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
488 |
+
vocab_dict = create_vocabulary_from_data(
|
489 |
+
raw_datasets,
|
490 |
+
word_delimiter_token=word_delimiter_token,
|
491 |
+
unk_token=unk_token,
|
492 |
+
pad_token=pad_token,
|
493 |
+
)
|
494 |
+
|
495 |
+
# save vocab dict to be loaded into tokenizer
|
496 |
+
with open(vocab_file, "w") as file:
|
497 |
+
json.dump(vocab_dict, file)
|
498 |
+
|
499 |
+
# if tokenizer has just been created
|
500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
501 |
+
tokenizer_kwargs = {
|
502 |
+
"config": config if config.tokenizer_class is not None else None,
|
503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
504 |
+
"unk_token": unk_token,
|
505 |
+
"pad_token": pad_token,
|
506 |
+
"word_delimiter_token": word_delimiter_token,
|
507 |
+
}
|
508 |
+
|
509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
511 |
+
# one local process can concurrently download model & vocab.
|
512 |
+
|
513 |
+
# load feature_extractor and tokenizer
|
514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
515 |
+
tokenizer_name_or_path,
|
516 |
+
use_auth_token=data_args.use_auth_token,
|
517 |
+
**tokenizer_kwargs,
|
518 |
+
)
|
519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
521 |
+
)
|
522 |
+
|
523 |
+
# adapt config
|
524 |
+
config.update(
|
525 |
+
{
|
526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
527 |
+
"attention_dropout": model_args.attention_dropout,
|
528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
529 |
+
"final_dropout": model_args.final_dropout,
|
530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
531 |
+
"mask_time_length": model_args.mask_time_length,
|
532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
535 |
+
"layerdrop": model_args.layerdrop,
|
536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
538 |
+
"vocab_size": len(tokenizer),
|
539 |
+
"activation_dropout": model_args.activation_dropout,
|
540 |
+
}
|
541 |
+
)
|
542 |
+
|
543 |
+
# create model
|
544 |
+
model = AutoModelForCTC.from_pretrained(
|
545 |
+
model_args.model_name_or_path,
|
546 |
+
cache_dir=model_args.cache_dir,
|
547 |
+
config=config,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
)
|
550 |
+
|
551 |
+
# freeze encoder
|
552 |
+
if model_args.freeze_feature_encoder:
|
553 |
+
model.freeze_feature_encoder()
|
554 |
+
|
555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
558 |
+
# via the `feature_extractor`
|
559 |
+
|
560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
563 |
+
raw_datasets = raw_datasets.cast_column(
|
564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
565 |
+
)
|
566 |
+
|
567 |
+
# derive max & min input length for sample rate & max duration
|
568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
570 |
+
audio_column_name = data_args.audio_column_name
|
571 |
+
num_workers = data_args.preprocessing_num_workers
|
572 |
+
|
573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
574 |
+
phoneme_language = data_args.phoneme_language
|
575 |
+
|
576 |
+
# Preprocessing the datasets.
|
577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
578 |
+
def prepare_dataset(batch):
|
579 |
+
# load audio
|
580 |
+
sample = batch[audio_column_name]
|
581 |
+
|
582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
583 |
+
batch["input_values"] = inputs.input_values[0]
|
584 |
+
batch["input_length"] = len(batch["input_values"])
|
585 |
+
|
586 |
+
# encode targets
|
587 |
+
additional_kwargs = {}
|
588 |
+
if phoneme_language is not None:
|
589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
590 |
+
|
591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
592 |
+
return batch
|
593 |
+
|
594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
595 |
+
vectorized_datasets = raw_datasets.map(
|
596 |
+
prepare_dataset,
|
597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
598 |
+
num_proc=num_workers,
|
599 |
+
desc="preprocess datasets",
|
600 |
+
)
|
601 |
+
|
602 |
+
def is_audio_in_length_range(length):
|
603 |
+
return length > min_input_length and length < max_input_length
|
604 |
+
|
605 |
+
# filter data that is shorter than min_input_length
|
606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
607 |
+
is_audio_in_length_range,
|
608 |
+
num_proc=num_workers,
|
609 |
+
input_columns=["input_length"],
|
610 |
+
)
|
611 |
+
|
612 |
+
# 7. Next, we can prepare the training.
|
613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
614 |
+
# instantiate a data collator and the trainer
|
615 |
+
|
616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
618 |
+
|
619 |
+
# for large datasets it is advised to run the preprocessing on a
|
620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
621 |
+
# be a timeout when running the script in distributed mode.
|
622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
623 |
+
# cached dataset
|
624 |
+
if data_args.preprocessing_only:
|
625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
626 |
+
return
|
627 |
+
|
628 |
+
def compute_metrics(pred):
|
629 |
+
pred_logits = pred.predictions
|
630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
631 |
+
|
632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
633 |
+
|
634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
635 |
+
# we do not want to group tokens when computing the metrics
|
636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
637 |
+
|
638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
639 |
+
|
640 |
+
return metrics
|
641 |
+
|
642 |
+
# Now save everything to be able to create a single processor later
|
643 |
+
if is_main_process(training_args.local_rank):
|
644 |
+
# save feature extractor, tokenizer and config
|
645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
647 |
+
config.save_pretrained(training_args.output_dir)
|
648 |
+
|
649 |
+
try:
|
650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
651 |
+
except (OSError, KeyError):
|
652 |
+
warnings.warn(
|
653 |
+
"Loading a processor from a feature extractor config that does not"
|
654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
657 |
+
FutureWarning,
|
658 |
+
)
|
659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
660 |
+
|
661 |
+
# Instantiate custom data collator
|
662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
663 |
+
|
664 |
+
# Initialize Trainer
|
665 |
+
trainer = Trainer(
|
666 |
+
model=model,
|
667 |
+
data_collator=data_collator,
|
668 |
+
args=training_args,
|
669 |
+
compute_metrics=compute_metrics,
|
670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
672 |
+
tokenizer=feature_extractor,
|
673 |
+
)
|
674 |
+
|
675 |
+
# 8. Finally, we can start training
|
676 |
+
|
677 |
+
# Training
|
678 |
+
if training_args.do_train:
|
679 |
+
|
680 |
+
# use last checkpoint if exist
|
681 |
+
if last_checkpoint is not None:
|
682 |
+
checkpoint = last_checkpoint
|
683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
684 |
+
checkpoint = model_args.model_name_or_path
|
685 |
+
else:
|
686 |
+
checkpoint = None
|
687 |
+
|
688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
689 |
+
trainer.save_model()
|
690 |
+
|
691 |
+
metrics = train_result.metrics
|
692 |
+
max_train_samples = (
|
693 |
+
data_args.max_train_samples
|
694 |
+
if data_args.max_train_samples is not None
|
695 |
+
else len(vectorized_datasets["train"])
|
696 |
+
)
|
697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
698 |
+
|
699 |
+
trainer.log_metrics("train", metrics)
|
700 |
+
trainer.save_metrics("train", metrics)
|
701 |
+
trainer.save_state()
|
702 |
+
|
703 |
+
# Evaluation
|
704 |
+
results = {}
|
705 |
+
if training_args.do_eval:
|
706 |
+
logger.info("*** Evaluate ***")
|
707 |
+
metrics = trainer.evaluate()
|
708 |
+
max_eval_samples = (
|
709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
710 |
+
)
|
711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
712 |
+
|
713 |
+
trainer.log_metrics("eval", metrics)
|
714 |
+
trainer.save_metrics("eval", metrics)
|
715 |
+
|
716 |
+
# Write model card and (optionally) push to hub
|
717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
718 |
+
kwargs = {
|
719 |
+
"finetuned_from": model_args.model_name_or_path,
|
720 |
+
"tasks": "speech-recognition",
|
721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
724 |
+
}
|
725 |
+
if "common_voice" in data_args.dataset_name:
|
726 |
+
kwargs["language"] = config_name
|
727 |
+
|
728 |
+
if training_args.push_to_hub:
|
729 |
+
trainer.push_to_hub(**kwargs)
|
730 |
+
else:
|
731 |
+
trainer.create_model_card(**kwargs)
|
732 |
+
|
733 |
+
return results
|
734 |
+
|
735 |
+
|
736 |
+
if __name__ == "__main__":
|
737 |
+
main()
|
run_speech_recognition_ctc_bnb.py
ADDED
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import bitsandbytes as bnb
|
34 |
+
import transformers
|
35 |
+
from transformers import (
|
36 |
+
AutoConfig,
|
37 |
+
AutoFeatureExtractor,
|
38 |
+
AutoModelForCTC,
|
39 |
+
AutoProcessor,
|
40 |
+
AutoTokenizer,
|
41 |
+
HfArgumentParser,
|
42 |
+
Trainer,
|
43 |
+
TrainingArguments,
|
44 |
+
Wav2Vec2Processor,
|
45 |
+
set_seed,
|
46 |
+
)
|
47 |
+
from transformers.trainer_pt_utils import get_parameter_names
|
48 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
49 |
+
from transformers.utils import check_min_version
|
50 |
+
from transformers.utils.versions import require_version
|
51 |
+
|
52 |
+
|
53 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
54 |
+
check_min_version("4.16.0.dev0")
|
55 |
+
|
56 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
def list_field(default=None, metadata=None):
|
63 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
64 |
+
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class ModelArguments:
|
68 |
+
"""
|
69 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
70 |
+
"""
|
71 |
+
|
72 |
+
model_name_or_path: str = field(
|
73 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
74 |
+
)
|
75 |
+
tokenizer_name_or_path: Optional[str] = field(
|
76 |
+
default=None,
|
77 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
78 |
+
)
|
79 |
+
cache_dir: Optional[str] = field(
|
80 |
+
default=None,
|
81 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
82 |
+
)
|
83 |
+
freeze_feature_encoder: bool = field(
|
84 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
85 |
+
)
|
86 |
+
attention_dropout: float = field(
|
87 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
88 |
+
)
|
89 |
+
activation_dropout: float = field(
|
90 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
91 |
+
)
|
92 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
93 |
+
hidden_dropout: float = field(
|
94 |
+
default=0.0,
|
95 |
+
metadata={
|
96 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
97 |
+
},
|
98 |
+
)
|
99 |
+
final_dropout: float = field(
|
100 |
+
default=0.0,
|
101 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
102 |
+
)
|
103 |
+
mask_time_prob: float = field(
|
104 |
+
default=0.05,
|
105 |
+
metadata={
|
106 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
107 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
108 |
+
"vectors will be masked along the time axis."
|
109 |
+
},
|
110 |
+
)
|
111 |
+
mask_time_length: int = field(
|
112 |
+
default=10,
|
113 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
114 |
+
)
|
115 |
+
mask_feature_prob: float = field(
|
116 |
+
default=0.0,
|
117 |
+
metadata={
|
118 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
119 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
120 |
+
},
|
121 |
+
)
|
122 |
+
mask_feature_length: int = field(
|
123 |
+
default=10,
|
124 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
125 |
+
)
|
126 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
127 |
+
ctc_loss_reduction: Optional[str] = field(
|
128 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
@dataclass
|
133 |
+
class DataTrainingArguments:
|
134 |
+
"""
|
135 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
136 |
+
|
137 |
+
Using `HfArgumentParser` we can turn this class
|
138 |
+
into argparse arguments to be able to specify them on
|
139 |
+
the command line.
|
140 |
+
"""
|
141 |
+
|
142 |
+
dataset_name: str = field(
|
143 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
144 |
+
)
|
145 |
+
dataset_config_name: str = field(
|
146 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
147 |
+
)
|
148 |
+
train_split_name: str = field(
|
149 |
+
default="train+validation",
|
150 |
+
metadata={
|
151 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
152 |
+
},
|
153 |
+
)
|
154 |
+
eval_split_name: str = field(
|
155 |
+
default="test",
|
156 |
+
metadata={
|
157 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
158 |
+
},
|
159 |
+
)
|
160 |
+
audio_column_name: str = field(
|
161 |
+
default="audio",
|
162 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
163 |
+
)
|
164 |
+
text_column_name: str = field(
|
165 |
+
default="text",
|
166 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
167 |
+
)
|
168 |
+
overwrite_cache: bool = field(
|
169 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
170 |
+
)
|
171 |
+
preprocessing_num_workers: Optional[int] = field(
|
172 |
+
default=None,
|
173 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
174 |
+
)
|
175 |
+
max_train_samples: Optional[int] = field(
|
176 |
+
default=None,
|
177 |
+
metadata={
|
178 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
179 |
+
"value if set."
|
180 |
+
},
|
181 |
+
)
|
182 |
+
max_eval_samples: Optional[int] = field(
|
183 |
+
default=None,
|
184 |
+
metadata={
|
185 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
186 |
+
"value if set."
|
187 |
+
},
|
188 |
+
)
|
189 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
190 |
+
default=None,
|
191 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
192 |
+
)
|
193 |
+
eval_metrics: List[str] = list_field(
|
194 |
+
default=["wer"],
|
195 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
196 |
+
)
|
197 |
+
max_duration_in_seconds: float = field(
|
198 |
+
default=20.0,
|
199 |
+
metadata={
|
200 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
201 |
+
},
|
202 |
+
)
|
203 |
+
min_duration_in_seconds: float = field(
|
204 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
205 |
+
)
|
206 |
+
preprocessing_only: bool = field(
|
207 |
+
default=False,
|
208 |
+
metadata={
|
209 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
210 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
211 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
212 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
213 |
+
},
|
214 |
+
)
|
215 |
+
use_auth_token: bool = field(
|
216 |
+
default=False,
|
217 |
+
metadata={
|
218 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
219 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
220 |
+
},
|
221 |
+
)
|
222 |
+
unk_token: str = field(
|
223 |
+
default="[UNK]",
|
224 |
+
metadata={"help": "The unk token for the tokenizer"},
|
225 |
+
)
|
226 |
+
pad_token: str = field(
|
227 |
+
default="[PAD]",
|
228 |
+
metadata={"help": "The padding token for the tokenizer"},
|
229 |
+
)
|
230 |
+
word_delimiter_token: str = field(
|
231 |
+
default="|",
|
232 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
233 |
+
)
|
234 |
+
phoneme_language: Optional[str] = field(
|
235 |
+
default=None,
|
236 |
+
metadata={
|
237 |
+
"help": "The target language that should be used be"
|
238 |
+
" passed to the tokenizer for tokenization. Note that"
|
239 |
+
" this is only relevant if the model classifies the"
|
240 |
+
" input audio to a sequence of phoneme sequences."
|
241 |
+
},
|
242 |
+
)
|
243 |
+
|
244 |
+
|
245 |
+
@dataclass
|
246 |
+
class DataCollatorCTCWithPadding:
|
247 |
+
"""
|
248 |
+
Data collator that will dynamically pad the inputs received.
|
249 |
+
Args:
|
250 |
+
processor (:class:`~transformers.AutoProcessor`)
|
251 |
+
The processor used for proccessing the data.
|
252 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
253 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
254 |
+
among:
|
255 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
256 |
+
sequence if provided).
|
257 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
258 |
+
maximum acceptable input length for the model if that argument is not provided.
|
259 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
260 |
+
different lengths).
|
261 |
+
max_length (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
263 |
+
max_length_labels (:obj:`int`, `optional`):
|
264 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
265 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
266 |
+
If set will pad the sequence to a multiple of the provided value.
|
267 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
268 |
+
7.5 (Volta).
|
269 |
+
"""
|
270 |
+
|
271 |
+
processor: AutoProcessor
|
272 |
+
padding: Union[bool, str] = "longest"
|
273 |
+
pad_to_multiple_of: Optional[int] = None
|
274 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
275 |
+
|
276 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
277 |
+
# split inputs and labels since they have to be of different lenghts and need
|
278 |
+
# different padding methods
|
279 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
280 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
281 |
+
|
282 |
+
batch = self.processor.pad(
|
283 |
+
input_features,
|
284 |
+
padding=self.padding,
|
285 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
286 |
+
return_tensors="pt",
|
287 |
+
)
|
288 |
+
|
289 |
+
with self.processor.as_target_processor():
|
290 |
+
labels_batch = self.processor.pad(
|
291 |
+
label_features,
|
292 |
+
padding=self.padding,
|
293 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
294 |
+
return_tensors="pt",
|
295 |
+
)
|
296 |
+
|
297 |
+
# replace padding with -100 to ignore loss correctly
|
298 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
299 |
+
|
300 |
+
batch["labels"] = labels
|
301 |
+
|
302 |
+
return batch
|
303 |
+
|
304 |
+
|
305 |
+
def create_vocabulary_from_data(
|
306 |
+
datasets: DatasetDict,
|
307 |
+
word_delimiter_token: Optional[str] = None,
|
308 |
+
unk_token: Optional[str] = None,
|
309 |
+
pad_token: Optional[str] = None,
|
310 |
+
):
|
311 |
+
# Given training and test labels create vocabulary
|
312 |
+
def extract_all_chars(batch):
|
313 |
+
all_text = " ".join(batch["target_text"])
|
314 |
+
vocab = list(set(all_text))
|
315 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
316 |
+
|
317 |
+
vocabs = datasets.map(
|
318 |
+
extract_all_chars,
|
319 |
+
batched=True,
|
320 |
+
batch_size=-1,
|
321 |
+
keep_in_memory=True,
|
322 |
+
remove_columns=datasets["train"].column_names,
|
323 |
+
)
|
324 |
+
|
325 |
+
# take union of all unique characters in each dataset
|
326 |
+
vocab_set = functools.reduce(
|
327 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
328 |
+
)
|
329 |
+
|
330 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
331 |
+
|
332 |
+
# replace white space with delimiter token
|
333 |
+
if word_delimiter_token is not None:
|
334 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
335 |
+
del vocab_dict[" "]
|
336 |
+
|
337 |
+
# add unk and pad token
|
338 |
+
if unk_token is not None:
|
339 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
340 |
+
|
341 |
+
if pad_token is not None:
|
342 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
343 |
+
|
344 |
+
return vocab_dict
|
345 |
+
|
346 |
+
|
347 |
+
def main():
|
348 |
+
# See all possible arguments in src/transformers/training_args.py
|
349 |
+
# or by passing the --help flag to this script.
|
350 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
351 |
+
|
352 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
353 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
354 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
355 |
+
# let's parse it to get our arguments.
|
356 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
357 |
+
else:
|
358 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
359 |
+
|
360 |
+
# Detecting last checkpoint.
|
361 |
+
last_checkpoint = None
|
362 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
363 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
364 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
365 |
+
raise ValueError(
|
366 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
367 |
+
"Use --overwrite_output_dir to overcome."
|
368 |
+
)
|
369 |
+
elif last_checkpoint is not None:
|
370 |
+
logger.info(
|
371 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
372 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
373 |
+
)
|
374 |
+
|
375 |
+
# Setup logging
|
376 |
+
logging.basicConfig(
|
377 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
378 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
379 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
380 |
+
)
|
381 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
382 |
+
|
383 |
+
# Log on each process the small summary:
|
384 |
+
logger.warning(
|
385 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
386 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
387 |
+
)
|
388 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
389 |
+
if is_main_process(training_args.local_rank):
|
390 |
+
transformers.utils.logging.set_verbosity_info()
|
391 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
392 |
+
|
393 |
+
# Set seed before initializing model.
|
394 |
+
set_seed(training_args.seed)
|
395 |
+
|
396 |
+
# 1. First, let's load the dataset
|
397 |
+
raw_datasets = DatasetDict()
|
398 |
+
|
399 |
+
if training_args.do_train:
|
400 |
+
raw_datasets["train"] = load_dataset(
|
401 |
+
data_args.dataset_name,
|
402 |
+
data_args.dataset_config_name,
|
403 |
+
split=data_args.train_split_name,
|
404 |
+
use_auth_token=True,
|
405 |
+
)
|
406 |
+
|
407 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
408 |
+
raise ValueError(
|
409 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
410 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
411 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
412 |
+
)
|
413 |
+
|
414 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
415 |
+
raise ValueError(
|
416 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
417 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
418 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
419 |
+
)
|
420 |
+
|
421 |
+
if data_args.max_train_samples is not None:
|
422 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
423 |
+
|
424 |
+
if training_args.do_eval:
|
425 |
+
raw_datasets["eval"] = load_dataset(
|
426 |
+
data_args.dataset_name,
|
427 |
+
data_args.dataset_config_name,
|
428 |
+
split=data_args.eval_split_name,
|
429 |
+
use_auth_token=True,
|
430 |
+
)
|
431 |
+
|
432 |
+
if data_args.max_eval_samples is not None:
|
433 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
434 |
+
|
435 |
+
# 2. We remove some special characters from the datasets
|
436 |
+
# that make training complicated and do not help in transcribing the speech
|
437 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
438 |
+
# that could be easily picked up by the model
|
439 |
+
chars_to_ignore_regex = (
|
440 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
441 |
+
)
|
442 |
+
text_column_name = data_args.text_column_name
|
443 |
+
|
444 |
+
def remove_special_characters(batch):
|
445 |
+
if chars_to_ignore_regex is not None:
|
446 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
447 |
+
else:
|
448 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
449 |
+
return batch
|
450 |
+
|
451 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
452 |
+
raw_datasets = raw_datasets.map(
|
453 |
+
remove_special_characters,
|
454 |
+
remove_columns=[text_column_name],
|
455 |
+
desc="remove special characters from datasets",
|
456 |
+
)
|
457 |
+
|
458 |
+
def clean_batch(batch):
|
459 |
+
batch["target_text"] = re.sub("([^A-Za-zÀ-ú ])", '', batch["target_text"]).lower()
|
460 |
+
batch["target_text"]= re.sub("([ß|þ|ð|æ])",'',batch['target_text'])
|
461 |
+
return batch
|
462 |
+
|
463 |
+
with training_args.main_process_first(desc="dataset map clean batch removal"):
|
464 |
+
raw_datasets = raw_datasets.map(
|
465 |
+
clean_batch,
|
466 |
+
#remove_columns=[text_column_name],
|
467 |
+
desc="remove rare characters from datasets",
|
468 |
+
)
|
469 |
+
|
470 |
+
def homologate_accents(batch):
|
471 |
+
batch["target_text"]=re.sub("([â|ã|ä|å|à])","a",batch["target_text"])
|
472 |
+
batch["target_text"]=re.sub("([é|ê|ë])","e",batch["target_text"])
|
473 |
+
batch["target_text"]=re.sub("([ì|î|ï])","i",batch["target_text"])
|
474 |
+
batch["target_text"]=re.sub("([ö|õ|ô|ò|ø])","o",batch["target_text"])
|
475 |
+
batch["target_text"]=re.sub("ù","u",batch["target_text"])
|
476 |
+
batch["target_text"]=re.sub("ç","c",batch["target_text"])
|
477 |
+
return batch
|
478 |
+
|
479 |
+
with training_args.main_process_first(desc="dataset map homologate batch removal"):
|
480 |
+
raw_datasets = raw_datasets.map(
|
481 |
+
homologate_accents,
|
482 |
+
#remove_columns=[text_column_name],
|
483 |
+
desc="homologate accents characters from datasets",
|
484 |
+
)
|
485 |
+
|
486 |
+
set_characters = set()
|
487 |
+
for string in raw_datasets["train"]["target_text"]:
|
488 |
+
set_characters.update(string.lower())
|
489 |
+
|
490 |
+
vocab = [character for character in "aábcdeéfghiíjklmnñoópqrstuúüvwxyz·-"]
|
491 |
+
|
492 |
+
unwanted_chars = set_characters-set(vocab)-set([' '])
|
493 |
+
|
494 |
+
with training_args.main_process_first(desc="dataset filter non vocab chars"):
|
495 |
+
raw_datasets = raw_datasets.filter(
|
496 |
+
lambda example: not any((c in unwanted_chars) for c in example),
|
497 |
+
input_columns="target_text",
|
498 |
+
desc="remove examples with weird characters"
|
499 |
+
)
|
500 |
+
|
501 |
+
# save special tokens for tokenizer
|
502 |
+
word_delimiter_token = data_args.word_delimiter_token
|
503 |
+
unk_token = data_args.unk_token
|
504 |
+
pad_token = data_args.pad_token
|
505 |
+
|
506 |
+
# 3. Next, let's load the config as we might need it to create
|
507 |
+
# the tokenizer
|
508 |
+
# load config
|
509 |
+
config = AutoConfig.from_pretrained(
|
510 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
511 |
+
)
|
512 |
+
|
513 |
+
# 4. Next, if no tokenizer file is defined,
|
514 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
515 |
+
# the training and evaluation datasets
|
516 |
+
# We need to make sure that only first rank saves vocabulary
|
517 |
+
# make sure all processes wait until vocab is created
|
518 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
519 |
+
tokenizer_kwargs = {}
|
520 |
+
if tokenizer_name_or_path is None:
|
521 |
+
# save vocab in training output dir
|
522 |
+
tokenizer_name_or_path = training_args.output_dir
|
523 |
+
|
524 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
525 |
+
|
526 |
+
with training_args.main_process_first():
|
527 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
528 |
+
os.remove(vocab_file)
|
529 |
+
|
530 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
531 |
+
if not os.path.isfile(vocab_file):
|
532 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
533 |
+
vocab_dict = create_vocabulary_from_data(
|
534 |
+
raw_datasets,
|
535 |
+
word_delimiter_token=word_delimiter_token,
|
536 |
+
unk_token=unk_token,
|
537 |
+
pad_token=pad_token,
|
538 |
+
)
|
539 |
+
|
540 |
+
# save vocab dict to be loaded into tokenizer
|
541 |
+
with open(vocab_file, "w") as file:
|
542 |
+
json.dump(vocab_dict, file)
|
543 |
+
|
544 |
+
# if tokenizer has just been created
|
545 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
546 |
+
tokenizer_kwargs = {
|
547 |
+
"config": config if config.tokenizer_class is not None else None,
|
548 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
549 |
+
"unk_token": unk_token,
|
550 |
+
"pad_token": pad_token,
|
551 |
+
"word_delimiter_token": word_delimiter_token,
|
552 |
+
}
|
553 |
+
|
554 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
555 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
556 |
+
# one local process can concurrently download model & vocab.
|
557 |
+
|
558 |
+
# load feature_extractor and tokenizer
|
559 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
560 |
+
tokenizer_name_or_path,
|
561 |
+
use_auth_token=data_args.use_auth_token,
|
562 |
+
**tokenizer_kwargs,
|
563 |
+
)
|
564 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
565 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
566 |
+
)
|
567 |
+
|
568 |
+
# adapt config
|
569 |
+
config.update(
|
570 |
+
{
|
571 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
572 |
+
"attention_dropout": model_args.attention_dropout,
|
573 |
+
"hidden_dropout": model_args.hidden_dropout,
|
574 |
+
"final_dropout": model_args.final_dropout,
|
575 |
+
"mask_time_prob": model_args.mask_time_prob,
|
576 |
+
"mask_time_length": model_args.mask_time_length,
|
577 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
578 |
+
"mask_feature_length": model_args.mask_feature_length,
|
579 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
580 |
+
"layerdrop": model_args.layerdrop,
|
581 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
582 |
+
"pad_token_id": tokenizer.pad_token_id,
|
583 |
+
"vocab_size": len(tokenizer),
|
584 |
+
"activation_dropout": model_args.activation_dropout,
|
585 |
+
}
|
586 |
+
)
|
587 |
+
|
588 |
+
# create model
|
589 |
+
model = AutoModelForCTC.from_pretrained(
|
590 |
+
model_args.model_name_or_path,
|
591 |
+
cache_dir=model_args.cache_dir,
|
592 |
+
config=config,
|
593 |
+
use_auth_token=data_args.use_auth_token,
|
594 |
+
)
|
595 |
+
|
596 |
+
# freeze encoder
|
597 |
+
if model_args.freeze_feature_encoder:
|
598 |
+
model.freeze_feature_encoder()
|
599 |
+
|
600 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
601 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
602 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
603 |
+
# via the `feature_extractor`
|
604 |
+
|
605 |
+
# make sure that dataset decodes audio with correct sampling rate
|
606 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
607 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
608 |
+
raw_datasets = raw_datasets.cast_column(
|
609 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
610 |
+
)
|
611 |
+
|
612 |
+
# derive max & min input length for sample rate & max duration
|
613 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
614 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
615 |
+
audio_column_name = data_args.audio_column_name
|
616 |
+
num_workers = data_args.preprocessing_num_workers
|
617 |
+
|
618 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
619 |
+
phoneme_language = data_args.phoneme_language
|
620 |
+
|
621 |
+
# Preprocessing the datasets.
|
622 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
623 |
+
def prepare_dataset(batch):
|
624 |
+
# load audio
|
625 |
+
sample = batch[audio_column_name]
|
626 |
+
|
627 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
628 |
+
batch["input_values"] = inputs.input_values[0]
|
629 |
+
batch["input_length"] = len(batch["input_values"])
|
630 |
+
|
631 |
+
# encode targets
|
632 |
+
additional_kwargs = {}
|
633 |
+
if phoneme_language is not None:
|
634 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
635 |
+
|
636 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
637 |
+
return batch
|
638 |
+
|
639 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
640 |
+
vectorized_datasets = raw_datasets.map(
|
641 |
+
prepare_dataset,
|
642 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
643 |
+
num_proc=num_workers,
|
644 |
+
desc="preprocess datasets",
|
645 |
+
)
|
646 |
+
|
647 |
+
def is_audio_in_length_range(length):
|
648 |
+
return length > min_input_length and length < max_input_length
|
649 |
+
|
650 |
+
# filter data that is shorter than min_input_length
|
651 |
+
vectorized_datasets = vectorized_datasets.filter(
|
652 |
+
is_audio_in_length_range,
|
653 |
+
num_proc=num_workers,
|
654 |
+
input_columns=["input_length"],
|
655 |
+
)
|
656 |
+
|
657 |
+
# 7. Next, we can prepare the training.
|
658 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
659 |
+
# instantiate a data collator and the trainer
|
660 |
+
|
661 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
662 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
663 |
+
|
664 |
+
# for large datasets it is advised to run the preprocessing on a
|
665 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
666 |
+
# be a timeout when running the script in distributed mode.
|
667 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
668 |
+
# cached dataset
|
669 |
+
if data_args.preprocessing_only:
|
670 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
671 |
+
return
|
672 |
+
|
673 |
+
def compute_metrics(pred):
|
674 |
+
pred_logits = pred.predictions
|
675 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
676 |
+
|
677 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
678 |
+
|
679 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
680 |
+
# we do not want to group tokens when computing the metrics
|
681 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
682 |
+
|
683 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
684 |
+
|
685 |
+
return metrics
|
686 |
+
|
687 |
+
# Now save everything to be able to create a single processor later
|
688 |
+
if is_main_process(training_args.local_rank):
|
689 |
+
# save feature extractor, tokenizer and config
|
690 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
691 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
692 |
+
config.save_pretrained(training_args.output_dir)
|
693 |
+
|
694 |
+
try:
|
695 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
696 |
+
except (OSError, KeyError):
|
697 |
+
warnings.warn(
|
698 |
+
"Loading a processor from a feature extractor config that does not"
|
699 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
700 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
701 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
702 |
+
FutureWarning,
|
703 |
+
)
|
704 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
705 |
+
|
706 |
+
# Instantiate custom data collator
|
707 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
708 |
+
|
709 |
+
decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
|
710 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
711 |
+
optimizer_grouped_parameters = [
|
712 |
+
{
|
713 |
+
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
|
714 |
+
"weight_decay": training_args.weight_decay,
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
|
718 |
+
"weight_decay": 0.0,
|
719 |
+
},
|
720 |
+
]
|
721 |
+
optimizer = bnb.optim.Adam8bit(
|
722 |
+
params=optimizer_grouped_parameters,
|
723 |
+
lr=training_args.learning_rate,
|
724 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
725 |
+
eps=training_args.adam_epsilon,
|
726 |
+
)
|
727 |
+
|
728 |
+
optimizers = (optimizer, None)
|
729 |
+
|
730 |
+
# Initialize Trainer
|
731 |
+
trainer = Trainer(
|
732 |
+
model=model,
|
733 |
+
data_collator=data_collator,
|
734 |
+
args=training_args,
|
735 |
+
compute_metrics=compute_metrics,
|
736 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
737 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
738 |
+
tokenizer=feature_extractor,
|
739 |
+
optimizers=optimizers,
|
740 |
+
)
|
741 |
+
|
742 |
+
# 8. Finally, we can start training
|
743 |
+
|
744 |
+
# Training
|
745 |
+
if training_args.do_train:
|
746 |
+
|
747 |
+
# use last checkpoint if exist
|
748 |
+
if last_checkpoint is not None:
|
749 |
+
checkpoint = last_checkpoint
|
750 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
751 |
+
checkpoint = model_args.model_name_or_path
|
752 |
+
else:
|
753 |
+
checkpoint = None
|
754 |
+
|
755 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
756 |
+
trainer.save_model()
|
757 |
+
|
758 |
+
metrics = train_result.metrics
|
759 |
+
max_train_samples = (
|
760 |
+
data_args.max_train_samples
|
761 |
+
if data_args.max_train_samples is not None
|
762 |
+
else len(vectorized_datasets["train"])
|
763 |
+
)
|
764 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
765 |
+
|
766 |
+
trainer.log_metrics("train", metrics)
|
767 |
+
trainer.save_metrics("train", metrics)
|
768 |
+
trainer.save_state()
|
769 |
+
|
770 |
+
# Evaluation
|
771 |
+
results = {}
|
772 |
+
if training_args.do_eval:
|
773 |
+
logger.info("*** Evaluate ***")
|
774 |
+
metrics = trainer.evaluate()
|
775 |
+
max_eval_samples = (
|
776 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
777 |
+
)
|
778 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
779 |
+
|
780 |
+
trainer.log_metrics("eval", metrics)
|
781 |
+
trainer.save_metrics("eval", metrics)
|
782 |
+
|
783 |
+
# Write model card and (optionally) push to hub
|
784 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
785 |
+
kwargs = {
|
786 |
+
"finetuned_from": model_args.model_name_or_path,
|
787 |
+
"tasks": "speech-recognition",
|
788 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
789 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
790 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
791 |
+
}
|
792 |
+
if "common_voice" in data_args.dataset_name:
|
793 |
+
kwargs["language"] = config_name
|
794 |
+
|
795 |
+
if training_args.push_to_hub:
|
796 |
+
trainer.push_to_hub(**kwargs)
|
797 |
+
else:
|
798 |
+
trainer.create_model_card(**kwargs)
|
799 |
+
|
800 |
+
return results
|
801 |
+
|
802 |
+
|
803 |
+
if __name__ == "__main__":
|
804 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.8738376914307662,
|
4 |
+
"train_runtime": 268775.0566,
|
5 |
+
"train_samples": 229440,
|
6 |
+
"train_samples_per_second": 8.537,
|
7 |
+
"train_steps_per_second": 0.267
|
8 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61af16ecf3f3e38206ca59d2abf9c3872cfd4e4f38971380d8bed24a74daad7d
|
3 |
+
size 3055
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "á": 27, "í": 28, "ñ": 29, "ó": 30, "ú": 31, "|": 0, "[UNK]": 32, "[PAD]": 33}
|