emeersman's picture
Adjust base64 encoding logic
0ece009
raw
history blame
2.41 kB
from typing import Dict, List, Any
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
encoded_image = data.pop("image", None)
params = data.pop("parameters", data)
# hyperparamters
num_inference_steps = params.pop("num_inference_steps", 20)
guidance_scale = params.pop("guidance_scale", 7.5)
negative_prompt = params.pop("negative_prompt", None)
height = params.pop("height", None)
width = params.pop("width", None)
manual_seed = params.pop("manual_seed", -1)
generator = torch.Generator(device).manual_seed(manual_seed)
if encoded_image is not None:
image = self.decode_base64_image(encoded_image)
# run inference pipeline
out = self.pipe(inputs,
image=image,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
height=height,
width=width
)
# return first generate PIL image
return out.images[0]
# helper to decode input image
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
image = Image.open(buffer)
return image