emeersman's picture
Update prompt handling
19d79cd
raw
history blame
2.11 kB
from typing import Dict, List, Any
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
prompt = data.pop("inputs", data)
params = data.pop("parameters", data)
# hyperparamters
num_inference_steps = params.pop("num_inference_steps", 20)
guidance_scale = params.pop("guidance_scale", 7.5)
negative_prompt = params.pop("negative_prompt", None)
height = params.pop("height", None)
width = params.pop("width", None)
manual_seed = params.pop("manual_seed", -1)
generator = torch.Generator(device).manual_seed(manual_seed)
# run inference pipeline
out = self.pipe(prompt,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
height=height,
width=width
)
# return first generate PIL image
image = out.images[0]
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue())