Add encoding logic and remove image decoding logic
Browse files- handler.py +4 -13
handler.py
CHANGED
@@ -28,7 +28,6 @@ class EndpointHandler():
|
|
28 |
A :obj:`dict`:. base64 encoded image
|
29 |
"""
|
30 |
inputs = data.pop("inputs", data)
|
31 |
-
encoded_image = data.pop("image", None)
|
32 |
params = data.pop("parameters", data)
|
33 |
|
34 |
# hyperparamters
|
@@ -41,12 +40,8 @@ class EndpointHandler():
|
|
41 |
|
42 |
generator = torch.Generator(device).manual_seed(manual_seed)
|
43 |
|
44 |
-
if encoded_image is not None:
|
45 |
-
image = self.decode_base64_image(encoded_image)
|
46 |
-
|
47 |
# run inference pipeline
|
48 |
out = self.pipe(inputs,
|
49 |
-
image=image,
|
50 |
generator=generator,
|
51 |
num_inference_steps=num_inference_steps,
|
52 |
guidance_scale=guidance_scale,
|
@@ -57,11 +52,7 @@ class EndpointHandler():
|
|
57 |
)
|
58 |
|
59 |
# return first generate PIL image
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
base64_image = base64.b64decode(image_string)
|
65 |
-
buffer = BytesIO(base64_image)
|
66 |
-
image = Image.open(buffer)
|
67 |
-
return image
|
|
|
28 |
A :obj:`dict`:. base64 encoded image
|
29 |
"""
|
30 |
inputs = data.pop("inputs", data)
|
|
|
31 |
params = data.pop("parameters", data)
|
32 |
|
33 |
# hyperparamters
|
|
|
40 |
|
41 |
generator = torch.Generator(device).manual_seed(manual_seed)
|
42 |
|
|
|
|
|
|
|
43 |
# run inference pipeline
|
44 |
out = self.pipe(inputs,
|
|
|
45 |
generator=generator,
|
46 |
num_inference_steps=num_inference_steps,
|
47 |
guidance_scale=guidance_scale,
|
|
|
52 |
)
|
53 |
|
54 |
# return first generate PIL image
|
55 |
+
image = out.images[0]
|
56 |
+
buffered = BytesIO()
|
57 |
+
image.save(buffered, format="JPEG")
|
58 |
+
return base64.b64encode(buffered.getvalue())
|
|
|
|
|
|
|
|