Update handler for img2img
Browse files- handler.py +40 -15
handler.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
# set device
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -11,11 +14,16 @@ if device.type != 'cuda':
|
|
11 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
12 |
|
13 |
class EndpointHandler():
|
14 |
-
def __init__(self):
|
15 |
# load the optimized model
|
16 |
-
self.
|
17 |
-
self.
|
18 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
21 |
"""
|
@@ -26,31 +34,48 @@ class EndpointHandler():
|
|
26 |
A :obj:`dict`:. base64 encoded image
|
27 |
"""
|
28 |
prompt = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
29 |
params = data.pop("parameters", data)
|
30 |
|
31 |
# hyperparamters
|
32 |
-
num_inference_steps = params.pop("num_inference_steps",
|
33 |
guidance_scale = params.pop("guidance_scale", 7.5)
|
34 |
negative_prompt = params.pop("negative_prompt", None)
|
35 |
height = params.pop("height", None)
|
36 |
width = params.pop("width", None)
|
37 |
manual_seed = params.pop("manual_seed", -1)
|
38 |
|
39 |
-
|
40 |
|
41 |
-
if (
|
|
|
42 |
generator.manual_seed(manual_seed)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
generator=generator,
|
47 |
num_inference_steps=num_inference_steps,
|
48 |
guidance_scale=guidance_scale,
|
49 |
num_images_per_prompt=1,
|
50 |
negative_prompt=negative_prompt,
|
51 |
height=height,
|
52 |
width=width
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return out.images[0]
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DDIMScheduler
|
7 |
|
8 |
# set device
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
14 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
15 |
|
16 |
class EndpointHandler():
|
17 |
+
def __init__(self, path=""):
|
18 |
# load the optimized model
|
19 |
+
self.textPipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
20 |
+
self.textPipe.scheduler = DDIMScheduler.from_config(self.textPipe.scheduler.config)
|
21 |
+
self.textPipe = self.textPipe.to(device)
|
22 |
+
|
23 |
+
# create an img2img model
|
24 |
+
self.imgPipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
25 |
+
self.imgPipe.scheduler = DDIMScheduler.from_config(self.imgPipe.scheduler.config)
|
26 |
+
self.imgPipe = self.imgPipe.to(device)
|
27 |
|
28 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
29 |
"""
|
|
|
34 |
A :obj:`dict`:. base64 encoded image
|
35 |
"""
|
36 |
prompt = data.pop("inputs", data)
|
37 |
+
url = data.pop("url", data)
|
38 |
+
response = requests.get(url)
|
39 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
40 |
+
init_image.thumbnail((512, 512))
|
41 |
+
|
42 |
params = data.pop("parameters", data)
|
43 |
|
44 |
# hyperparamters
|
45 |
+
num_inference_steps = params.pop("num_inference_steps", 25)
|
46 |
guidance_scale = params.pop("guidance_scale", 7.5)
|
47 |
negative_prompt = params.pop("negative_prompt", None)
|
48 |
height = params.pop("height", None)
|
49 |
width = params.pop("width", None)
|
50 |
manual_seed = params.pop("manual_seed", -1)
|
51 |
|
52 |
+
out = None
|
53 |
|
54 |
+
if data.get("url"):
|
55 |
+
generator = torch.Generator(device='cuda')
|
56 |
generator.manual_seed(manual_seed)
|
57 |
+
# run img2img pipeline
|
58 |
+
out = self.imgPipe(prompt,
|
59 |
+
image=init_image,
|
|
|
60 |
num_inference_steps=num_inference_steps,
|
61 |
guidance_scale=guidance_scale,
|
62 |
num_images_per_prompt=1,
|
63 |
negative_prompt=negative_prompt,
|
64 |
height=height,
|
65 |
width=width
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
# run text pipeline
|
69 |
+
out = self.textPipe(prompt,
|
70 |
+
image=init_image,
|
71 |
+
num_inference_steps=num_inference_steps,
|
72 |
+
guidance_scale=guidance_scale,
|
73 |
+
num_images_per_prompt=1,
|
74 |
+
negative_prompt=negative_prompt,
|
75 |
+
height=height,
|
76 |
+
width=width
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
# return first generated PIL image
|
81 |
return out.images[0]
|