Switch to PIL image processing
Browse files- handler.py +25 -18
handler.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
3 |
-
from torch import autocast
|
4 |
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
|
|
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
|
@@ -28,32 +28,39 @@ class EndpointHandler():
|
|
28 |
A :obj:`dict`:. base64 encoded image
|
29 |
"""
|
30 |
inputs = data.pop("inputs", data)
|
|
|
31 |
|
32 |
# hyperparamters
|
33 |
-
num_inference_steps =
|
34 |
-
guidance_scale =
|
35 |
-
negative_prompt =
|
36 |
-
height =
|
37 |
-
width =
|
38 |
-
manual_seed =
|
39 |
|
40 |
generator = torch.Generator(device).manual_seed(manual_seed)
|
41 |
|
|
|
|
|
|
|
42 |
# run inference pipeline
|
43 |
-
|
44 |
-
|
45 |
-
generator=generator,
|
46 |
num_inference_steps=num_inference_steps,
|
47 |
guidance_scale=guidance_scale,
|
48 |
num_images_per_prompt=1,
|
49 |
negative_prompt=negative_prompt,
|
50 |
height=height,
|
51 |
-
width=width
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
|
|
3 |
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
|
4 |
+
from PIL import Image
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
|
|
|
28 |
A :obj:`dict`:. base64 encoded image
|
29 |
"""
|
30 |
inputs = data.pop("inputs", data)
|
31 |
+
params = data.pop("parameters", data)
|
32 |
|
33 |
# hyperparamters
|
34 |
+
num_inference_steps = params.pop("num_inference_steps", 20)
|
35 |
+
guidance_scale = params.pop("guidance_scale", 7.5)
|
36 |
+
negative_prompt = params.pop("negative_prompt", None)
|
37 |
+
height = params.pop("height", None)
|
38 |
+
width = params.pop("width", None)
|
39 |
+
manual_seed = params.pop("manual_seed", -1)
|
40 |
|
41 |
generator = torch.Generator(device).manual_seed(manual_seed)
|
42 |
|
43 |
+
if encoded_image is not None:
|
44 |
+
image = self.decode_base64_image(encoded_image)
|
45 |
+
|
46 |
# run inference pipeline
|
47 |
+
out = self.pipe(inputs,
|
48 |
+
image=image,
|
49 |
+
generator=generator,
|
50 |
num_inference_steps=num_inference_steps,
|
51 |
guidance_scale=guidance_scale,
|
52 |
num_images_per_prompt=1,
|
53 |
negative_prompt=negative_prompt,
|
54 |
height=height,
|
55 |
+
width=width
|
56 |
+
)
|
57 |
|
58 |
+
# return first generate PIL image
|
59 |
+
return out.images[0]
|
60 |
+
|
61 |
+
# helper to decode input image
|
62 |
+
def decode_base64_image(self, image_string):
|
63 |
+
base64_image = base64.b64decode(image_string)
|
64 |
+
buffer = BytesIO(base64_image)
|
65 |
+
image = Image.open(buffer)
|
66 |
+
return image
|