gmedrano commited on
Commit
ef5dd98
·
verified ·
1 Parent(s): 5c1f0b9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:40
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: What role does NIST play in establishing AI standards?
25
+ sentences:
26
+ - "provides examples and concrete steps for communities, industry, governments,\
27
+ \ and others to take in order to \nbuild these protections into policy, practice,\
28
+ \ or the technological design process. \nTaken together, the technical protections\
29
+ \ and practices laid out in the Blueprint for an AI Bill of Rights can help \n\
30
+ guard the American public against many of the potential and actual harms identified\
31
+ \ by researchers, technolo­"
32
+ - "provides examples and concrete steps for communities, industry, governments,\
33
+ \ and others to take in order to \nbuild these protections into policy, practice,\
34
+ \ or the technological design process. \nTaken together, the technical protections\
35
+ \ and practices laid out in the Blueprint for an AI Bill of Rights can help \n\
36
+ guard the American public against many of the potential and actual harms identified\
37
+ \ by researchers, technolo­"
38
+ - "Acknowledgments: This report was accomplished with the many helpful comments\
39
+ \ and contributions \nfrom the community, including the NIST Generative AI Public\
40
+ \ Working Group, and NIST staff and guest \nresearchers: Chloe Autio, Jesse Dunietz,\
41
+ \ Patrick Hall, Shomik Jain, Kamie Roberts, Reva Schwartz, Martin \nStanley, and\
42
+ \ Elham Tabassi. \nNIST Technical Series Policies \nCopyright, Use, and Licensing\
43
+ \ Statements \nNIST Technical Series Publication Identifier Syntax \nPublication\
44
+ \ History"
45
+ - source_sentence: What are the implications of AI in decision-making processes?
46
+ sentences:
47
+ - "The measures taken to realize the vision set forward in this framework should\
48
+ \ be proportionate \nwith the extent and nature of the harm, or risk of harm,\
49
+ \ to people's rights, opportunities, and \naccess. \nRELATIONSHIP TO EXISTING\
50
+ \ LAW AND POLICY\nThe Blueprint for an AI Bill of Rights is an exercise in envisioning\
51
+ \ a future where the American public is \nprotected from the potential harms,\
52
+ \ and can fully enjoy the benefits, of automated systems. It describes princi­"
53
+ - "state of the science of AI measurement and safety today. This document focuses\
54
+ \ on risks for which there \nis an existing empirical evidence base at the time\
55
+ \ this profile was written; for example, speculative risks \nthat may potentially\
56
+ \ arise in more advanced, future GAI systems are not considered. Future updates\
57
+ \ may \nincorporate additional risks or provide further details on the risks identified\
58
+ \ below."
59
+ - "development of automated systems that adhere to and advance their safety, security\
60
+ \ and \neffectiveness. Multiple NSF programs support research that directly addresses\
61
+ \ many of these principles: \nthe National AI Research Institutes23 support research\
62
+ \ on all aspects of safe, trustworthy, fair, and explainable \nAI algorithms and\
63
+ \ systems; the Cyber Physical Systems24 program supports research on developing\
64
+ \ safe"
65
+ - source_sentence: How are AI systems validated for safety and fairness according
66
+ to NIST standards?
67
+ sentences:
68
+ - "tion and advises on implementation of the DOE AI Strategy and addresses issues\
69
+ \ and/or escalations on the \nethical use and development of AI systems.20 The\
70
+ \ Department of Defense has adopted Artificial Intelligence \nEthical Principles,\
71
+ \ and tenets for Responsible Artificial Intelligence specifically tailored to\
72
+ \ its national \nsecurity and defense activities.21 Similarly, the U.S. Intelligence\
73
+ \ Community (IC) has developed the Principles"
74
+ - "GOVERN 1.1: Legal and regulatory requirements involving AI are understood, managed,\
75
+ \ and documented. \nAction ID \nSuggested Action \nGAI Risks \nGV-1.1-001 Align\
76
+ \ GAI development and use with applicable laws and regulations, including \nthose\
77
+ \ related to data privacy, copyright and intellectual property law. \nData Privacy;\
78
+ \ Harmful Bias and \nHomogenization; Intellectual \nProperty \nAI Actor Tasks:\
79
+ \ Governance and Oversight"
80
+ - "more than a decade, is also helping to fulfill the 2023 Executive Order on Safe,\
81
+ \ Secure, and Trustworthy \nAI. NIST established the U.S. AI Safety Institute\
82
+ \ and the companion AI Safety Institute Consortium to \ncontinue the efforts set\
83
+ \ in motion by the E.O. to build the science necessary for safe, secure, and \n\
84
+ trustworthy development and use of AI. \nAcknowledgments: This report was accomplished\
85
+ \ with the many helpful comments and contributions"
86
+ - source_sentence: How does the AI Bill of Rights protect individual privacy?
87
+ sentences:
88
+ - "match the statistical properties of real-world data without disclosing personally\
89
+ \ \nidentifiable information or contributing to homogenization. \nData Privacy;\
90
+ \ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\
91
+ \ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
92
+ \ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\
93
+ \ are followed to respond to and recover from a previously unknown risk when it\
94
+ \ is identified. \nAction ID"
95
+ - "the principles described in the Blueprint for an AI Bill of Rights may be necessary\
96
+ \ to comply with existing law, \nconform to the practicalities of a specific use\
97
+ \ case, or balance competing public interests. In particular, law \nenforcement,\
98
+ \ and other regulatory contexts may require government actors to protect civil\
99
+ \ rights, civil liberties, \nand privacy in a manner consistent with, but using\
100
+ \ alternate mechanisms to, the specific principles discussed in"
101
+ - "civil rights, civil liberties, and privacy. The Blueprint for an AI Bill of Rights\
102
+ \ includes this Foreword, the five \nprinciples, notes on Applying the The Blueprint\
103
+ \ for an AI Bill of Rights, and a Technical Companion that gives \nconcrete steps\
104
+ \ that can be taken by many kinds of organizations—from governments at all levels\
105
+ \ to companies of \nall sizes—to uphold these values. Experts from across the\
106
+ \ private sector, governments, and international"
107
+ - source_sentence: How does the AI Bill of Rights protect individual privacy?
108
+ sentences:
109
+ - "57 \nNational Institute of Standards and Technology (2023) AI Risk Management\
110
+ \ Framework, Appendix B: \nHow AI Risks Differ from Traditional Software Risks.\
111
+ \ \nhttps://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Appendices/Appendix_B \n\
112
+ National Institute of Standards and Technology (2023) AI RMF Playbook. \nhttps://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook\
113
+ \ \nNational Institue of Standards and Technology (2023) Framing Risk"
114
+ - "principles for managing information about individuals have been incorporated\
115
+ \ into data privacy laws and \npolicies across the globe.5 The Blueprint for an\
116
+ \ AI Bill of Rights embraces elements of the FIPPs that are \nparticularly relevant\
117
+ \ to automated systems, without articulating a specific set of FIPPs or scoping\
118
+ \ \napplicability or the interests served to a single particular domain, like\
119
+ \ privacy, civil rights and civil liberties,"
120
+ - "harmful \nuses. \nThe \nNIST \nframework \nwill \nconsider \nand \nencompass\
121
+ \ \nprinciples \nsuch \nas \ntransparency, accountability, and fairness during\
122
+ \ pre-design, design and development, deployment, use, \nand testing and evaluation\
123
+ \ of AI technologies and systems. It is expected to be released in the winter\
124
+ \ of 2022-23. \n21"
125
+ model-index:
126
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
127
+ results:
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: val
133
+ type: val
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.6585006489314952
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.7
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.582665729755017
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.6
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.6722783219807118
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.7
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.6585002582595083
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.7
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.6722783219807118
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.7
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: test
170
+ type: test
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.7463407966146629
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.7999999999999999
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.7475379067038609
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.7999999999999999
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.7592380598802199
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.7999999999999999
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.7463412670178408
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.7999999999999999
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.7592380598802199
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.7999999999999999
201
+ name: Spearman Max
202
+ ---
203
+
204
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
205
+
206
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
207
+
208
+ ## Model Details
209
+
210
+ ### Model Description
211
+ - **Model Type:** Sentence Transformer
212
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
213
+ - **Maximum Sequence Length:** 512 tokens
214
+ - **Output Dimensionality:** 768 tokens
215
+ - **Similarity Function:** Cosine Similarity
216
+ <!-- - **Training Dataset:** Unknown -->
217
+ <!-- - **Language:** Unknown -->
218
+ <!-- - **License:** Unknown -->
219
+
220
+ ### Model Sources
221
+
222
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
223
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
224
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
225
+
226
+ ### Full Model Architecture
227
+
228
+ ```
229
+ SentenceTransformer(
230
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
231
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
232
+ (2): Normalize()
233
+ )
234
+ ```
235
+
236
+ ## Usage
237
+
238
+ ### Direct Usage (Sentence Transformers)
239
+
240
+ First install the Sentence Transformers library:
241
+
242
+ ```bash
243
+ pip install -U sentence-transformers
244
+ ```
245
+
246
+ Then you can load this model and run inference.
247
+ ```python
248
+ from sentence_transformers import SentenceTransformer
249
+
250
+ # Download from the 🤗 Hub
251
+ model = SentenceTransformer("gmedrano/snowflake-arctic-embed-m-finetuned")
252
+ # Run inference
253
+ sentences = [
254
+ 'How does the AI Bill of Rights protect individual privacy?',
255
+ 'principles for managing information about individuals have been incorporated into data privacy laws and \npolicies across the globe.5 The Blueprint for an AI Bill of Rights embraces elements of the FIPPs that are \nparticularly relevant to automated systems, without articulating a specific set of FIPPs or scoping \napplicability or the interests served to a single particular domain, like privacy, civil rights and civil liberties,',
256
+ 'harmful \nuses. \nThe \nNIST \nframework \nwill \nconsider \nand \nencompass \nprinciples \nsuch \nas \ntransparency, accountability, and fairness during pre-design, design and development, deployment, use, \nand testing and evaluation of AI technologies and systems. It is expected to be released in the winter of 2022-23. \n21',
257
+ ]
258
+ embeddings = model.encode(sentences)
259
+ print(embeddings.shape)
260
+ # [3, 768]
261
+
262
+ # Get the similarity scores for the embeddings
263
+ similarities = model.similarity(embeddings, embeddings)
264
+ print(similarities.shape)
265
+ # [3, 3]
266
+ ```
267
+
268
+ <!--
269
+ ### Direct Usage (Transformers)
270
+
271
+ <details><summary>Click to see the direct usage in Transformers</summary>
272
+
273
+ </details>
274
+ -->
275
+
276
+ <!--
277
+ ### Downstream Usage (Sentence Transformers)
278
+
279
+ You can finetune this model on your own dataset.
280
+
281
+ <details><summary>Click to expand</summary>
282
+
283
+ </details>
284
+ -->
285
+
286
+ <!--
287
+ ### Out-of-Scope Use
288
+
289
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
290
+ -->
291
+
292
+ ## Evaluation
293
+
294
+ ### Metrics
295
+
296
+ #### Semantic Similarity
297
+ * Dataset: `val`
298
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
299
+
300
+ | Metric | Value |
301
+ |:-------------------|:--------|
302
+ | pearson_cosine | 0.6585 |
303
+ | spearman_cosine | 0.7 |
304
+ | pearson_manhattan | 0.5827 |
305
+ | spearman_manhattan | 0.6 |
306
+ | pearson_euclidean | 0.6723 |
307
+ | spearman_euclidean | 0.7 |
308
+ | pearson_dot | 0.6585 |
309
+ | spearman_dot | 0.7 |
310
+ | pearson_max | 0.6723 |
311
+ | **spearman_max** | **0.7** |
312
+
313
+ #### Semantic Similarity
314
+ * Dataset: `test`
315
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
316
+
317
+ | Metric | Value |
318
+ |:-------------------|:--------|
319
+ | pearson_cosine | 0.7463 |
320
+ | spearman_cosine | 0.8 |
321
+ | pearson_manhattan | 0.7475 |
322
+ | spearman_manhattan | 0.8 |
323
+ | pearson_euclidean | 0.7592 |
324
+ | spearman_euclidean | 0.8 |
325
+ | pearson_dot | 0.7463 |
326
+ | spearman_dot | 0.8 |
327
+ | pearson_max | 0.7592 |
328
+ | **spearman_max** | **0.8** |
329
+
330
+ <!--
331
+ ## Bias, Risks and Limitations
332
+
333
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
334
+ -->
335
+
336
+ <!--
337
+ ### Recommendations
338
+
339
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
340
+ -->
341
+
342
+ ## Training Details
343
+
344
+ ### Training Dataset
345
+
346
+ #### Unnamed Dataset
347
+
348
+
349
+ * Size: 40 training samples
350
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
351
+ * Approximate statistics based on the first 40 samples:
352
+ | | sentence_0 | sentence_1 | label |
353
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
354
+ | type | string | string | float |
355
+ | details | <ul><li>min: 12 tokens</li><li>mean: 14.43 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 41 tokens</li><li>mean: 80.55 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 0.53</li><li>mean: 0.61</li><li>max: 0.76</li></ul> |
356
+ * Samples:
357
+ | sentence_0 | sentence_1 | label |
358
+ |:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
359
+ | <code>What should business leaders understand about AI risk management?</code> | <code>57 <br>National Institute of Standards and Technology (2023) AI Risk Management Framework, Appendix B: <br>How AI Risks Differ from Traditional Software Risks. <br>https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Appendices/Appendix_B <br>National Institute of Standards and Technology (2023) AI RMF Playbook. <br>https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook <br>National Institue of Standards and Technology (2023) Framing Risk</code> | <code>0.5692041097520776</code> |
360
+ | <code>What kind of data protection measures are required under current AI regulations?</code> | <code>GOVERN 1.1: Legal and regulatory requirements involving AI are understood, managed, and documented. <br>Action ID <br>Suggested Action <br>GAI Risks <br>GV-1.1-001 Align GAI development and use with applicable laws and regulations, including <br>those related to data privacy, copyright and intellectual property law. <br>Data Privacy; Harmful Bias and <br>Homogenization; Intellectual <br>Property <br>AI Actor Tasks: Governance and Oversight</code> | <code>0.5830958798587019</code> |
361
+ | <code>What are the implications of AI in decision-making processes?</code> | <code>state of the science of AI measurement and safety today. This document focuses on risks for which there <br>is an existing empirical evidence base at the time this profile was written; for example, speculative risks <br>that may potentially arise in more advanced, future GAI systems are not considered. Future updates may <br>incorporate additional risks or provide further details on the risks identified below.</code> | <code>0.5317174553776045</code> |
362
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
363
+ ```json
364
+ {
365
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
366
+ }
367
+ ```
368
+
369
+ ### Training Hyperparameters
370
+ #### Non-Default Hyperparameters
371
+
372
+ - `eval_strategy`: steps
373
+ - `per_device_train_batch_size`: 16
374
+ - `per_device_eval_batch_size`: 16
375
+ - `multi_dataset_batch_sampler`: round_robin
376
+
377
+ #### All Hyperparameters
378
+ <details><summary>Click to expand</summary>
379
+
380
+ - `overwrite_output_dir`: False
381
+ - `do_predict`: False
382
+ - `eval_strategy`: steps
383
+ - `prediction_loss_only`: True
384
+ - `per_device_train_batch_size`: 16
385
+ - `per_device_eval_batch_size`: 16
386
+ - `per_gpu_train_batch_size`: None
387
+ - `per_gpu_eval_batch_size`: None
388
+ - `gradient_accumulation_steps`: 1
389
+ - `eval_accumulation_steps`: None
390
+ - `torch_empty_cache_steps`: None
391
+ - `learning_rate`: 5e-05
392
+ - `weight_decay`: 0.0
393
+ - `adam_beta1`: 0.9
394
+ - `adam_beta2`: 0.999
395
+ - `adam_epsilon`: 1e-08
396
+ - `max_grad_norm`: 1
397
+ - `num_train_epochs`: 3
398
+ - `max_steps`: -1
399
+ - `lr_scheduler_type`: linear
400
+ - `lr_scheduler_kwargs`: {}
401
+ - `warmup_ratio`: 0.0
402
+ - `warmup_steps`: 0
403
+ - `log_level`: passive
404
+ - `log_level_replica`: warning
405
+ - `log_on_each_node`: True
406
+ - `logging_nan_inf_filter`: True
407
+ - `save_safetensors`: True
408
+ - `save_on_each_node`: False
409
+ - `save_only_model`: False
410
+ - `restore_callback_states_from_checkpoint`: False
411
+ - `no_cuda`: False
412
+ - `use_cpu`: False
413
+ - `use_mps_device`: False
414
+ - `seed`: 42
415
+ - `data_seed`: None
416
+ - `jit_mode_eval`: False
417
+ - `use_ipex`: False
418
+ - `bf16`: False
419
+ - `fp16`: False
420
+ - `fp16_opt_level`: O1
421
+ - `half_precision_backend`: auto
422
+ - `bf16_full_eval`: False
423
+ - `fp16_full_eval`: False
424
+ - `tf32`: None
425
+ - `local_rank`: 0
426
+ - `ddp_backend`: None
427
+ - `tpu_num_cores`: None
428
+ - `tpu_metrics_debug`: False
429
+ - `debug`: []
430
+ - `dataloader_drop_last`: False
431
+ - `dataloader_num_workers`: 0
432
+ - `dataloader_prefetch_factor`: None
433
+ - `past_index`: -1
434
+ - `disable_tqdm`: False
435
+ - `remove_unused_columns`: True
436
+ - `label_names`: None
437
+ - `load_best_model_at_end`: False
438
+ - `ignore_data_skip`: False
439
+ - `fsdp`: []
440
+ - `fsdp_min_num_params`: 0
441
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
442
+ - `fsdp_transformer_layer_cls_to_wrap`: None
443
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
444
+ - `deepspeed`: None
445
+ - `label_smoothing_factor`: 0.0
446
+ - `optim`: adamw_torch
447
+ - `optim_args`: None
448
+ - `adafactor`: False
449
+ - `group_by_length`: False
450
+ - `length_column_name`: length
451
+ - `ddp_find_unused_parameters`: None
452
+ - `ddp_bucket_cap_mb`: None
453
+ - `ddp_broadcast_buffers`: False
454
+ - `dataloader_pin_memory`: True
455
+ - `dataloader_persistent_workers`: False
456
+ - `skip_memory_metrics`: True
457
+ - `use_legacy_prediction_loop`: False
458
+ - `push_to_hub`: False
459
+ - `resume_from_checkpoint`: None
460
+ - `hub_model_id`: None
461
+ - `hub_strategy`: every_save
462
+ - `hub_private_repo`: False
463
+ - `hub_always_push`: False
464
+ - `gradient_checkpointing`: False
465
+ - `gradient_checkpointing_kwargs`: None
466
+ - `include_inputs_for_metrics`: False
467
+ - `eval_do_concat_batches`: True
468
+ - `fp16_backend`: auto
469
+ - `push_to_hub_model_id`: None
470
+ - `push_to_hub_organization`: None
471
+ - `mp_parameters`:
472
+ - `auto_find_batch_size`: False
473
+ - `full_determinism`: False
474
+ - `torchdynamo`: None
475
+ - `ray_scope`: last
476
+ - `ddp_timeout`: 1800
477
+ - `torch_compile`: False
478
+ - `torch_compile_backend`: None
479
+ - `torch_compile_mode`: None
480
+ - `dispatch_batches`: None
481
+ - `split_batches`: None
482
+ - `include_tokens_per_second`: False
483
+ - `include_num_input_tokens_seen`: False
484
+ - `neftune_noise_alpha`: None
485
+ - `optim_target_modules`: None
486
+ - `batch_eval_metrics`: False
487
+ - `eval_on_start`: False
488
+ - `eval_use_gather_object`: False
489
+ - `batch_sampler`: batch_sampler
490
+ - `multi_dataset_batch_sampler`: round_robin
491
+
492
+ </details>
493
+
494
+ ### Training Logs
495
+ | Epoch | Step | test_spearman_max | val_spearman_max |
496
+ |:-----:|:----:|:-----------------:|:----------------:|
497
+ | 1.0 | 3 | - | 0.6 |
498
+ | 2.0 | 6 | - | 0.7 |
499
+ | 3.0 | 9 | 0.8000 | 0.7 |
500
+
501
+
502
+ ### Framework Versions
503
+ - Python: 3.11.9
504
+ - Sentence Transformers: 3.1.1
505
+ - Transformers: 4.44.2
506
+ - PyTorch: 2.2.2
507
+ - Accelerate: 0.34.2
508
+ - Datasets: 3.0.0
509
+ - Tokenizers: 0.19.1
510
+
511
+ ## Citation
512
+
513
+ ### BibTeX
514
+
515
+ #### Sentence Transformers
516
+ ```bibtex
517
+ @inproceedings{reimers-2019-sentence-bert,
518
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
519
+ author = "Reimers, Nils and Gurevych, Iryna",
520
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
521
+ month = "11",
522
+ year = "2019",
523
+ publisher = "Association for Computational Linguistics",
524
+ url = "https://arxiv.org/abs/1908.10084",
525
+ }
526
+ ```
527
+
528
+ <!--
529
+ ## Glossary
530
+
531
+ *Clearly define terms in order to be accessible across audiences.*
532
+ -->
533
+
534
+ <!--
535
+ ## Model Card Authors
536
+
537
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
538
+ -->
539
+
540
+ <!--
541
+ ## Model Card Contact
542
+
543
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
544
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03e682f1c6e64176d5c1d23cee8aa1530eb41564670e0f496343362c353e9cd
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff