File size: 2,447 Bytes
f4319e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ef620
 
 
 
 
 
 
 
 
 
 
 
 
 
ced15bf
04ef620
 
f4319e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-4.0
base_model: MBZUAI/LaMini-Flan-T5-248M
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Lamini-Prompt-Enchance-Long
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Usage

```python
from transformers import pipeline     

# load model and tokenizer from huggingface hub with pipeline
enhancer = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=0)

prompt = "A blue-tinted bedroom scene, surreal and serene, with a mysterious reflected interior."
prefix = "Enhance the description: "
# enhance prompt
res = enhancer(prefix + prompt)

print(res[0]['summary_text'])
 
```

# Lamini-Prompt-Enchance-Long

This model is a fine-tuned version of [MBZUAI/LaMini-Flan-T5-248M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-248M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1624
- Rouge1: 20.2443
- Rouge2: 9.3642
- Rougel: 17.2484
- Rougelsum: 19.0703
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.4435        | 1.0   | 2014  | 2.2723          | 20.0108 | 9.2736 | 17.0569 | 18.8171   | 19.0    |
| 2.341         | 2.0   | 4028  | 2.2120          | 20.4422 | 9.4473 | 17.4347 | 19.2234   | 19.0    |
| 2.2948        | 3.0   | 6042  | 2.1820          | 20.5645 | 9.5426 | 17.5419 | 19.3714   | 19.0    |
| 2.2598        | 4.0   | 8056  | 2.1668          | 20.2354 | 9.3639 | 17.2379 | 19.0625   | 19.0    |
| 2.2431        | 5.0   | 10070 | 2.1624          | 20.2443 | 9.3642 | 17.2484 | 19.0703   | 19.0    |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1