--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: BERT_pretraining_h_100_wo_deepspeed results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.15387755648267093 --- # BERT_pretraining_h_100_wo_deepspeed This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 5.7778 - Accuracy: 0.1539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 208 - eval_batch_size: 208 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 6.8769 | 0.36 | 10000 | 6.7582 | 0.1101 | | 6.4647 | 0.71 | 20000 | 6.4764 | 0.1314 | | 6.3679 | 1.07 | 30000 | 6.3218 | 0.1407 | | 6.252 | 1.42 | 40000 | 6.2139 | 0.1454 | | 6.2132 | 1.78 | 50000 | 6.1398 | 0.1478 | | 6.0407 | 2.13 | 60000 | 6.0774 | 0.1502 | | 6.0694 | 2.49 | 70000 | 6.0303 | 0.1516 | | 5.9996 | 2.84 | 80000 | 5.9893 | 0.1521 | | 5.9166 | 3.2 | 90000 | 5.9553 | 0.1526 | | 5.8915 | 3.55 | 100000 | 5.9261 | 0.1530 | | 5.8924 | 3.91 | 110000 | 5.8996 | 0.1534 | | 5.8972 | 4.26 | 120000 | 5.8814 | 0.1533 | | 5.8454 | 4.62 | 130000 | 5.8626 | 0.1532 | | 5.8104 | 4.97 | 140000 | 5.8494 | 0.1534 | | 5.8461 | 5.33 | 150000 | 5.8378 | 0.1534 | | 5.8476 | 5.68 | 160000 | 5.8246 | 0.1536 | | 5.7255 | 6.04 | 170000 | 5.8155 | 0.1532 | | 5.8431 | 6.39 | 180000 | 5.8068 | 0.1537 | | 5.7526 | 6.75 | 190000 | 5.7981 | 0.1537 | | 5.7826 | 7.1 | 200000 | 5.7886 | 0.1537 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1