--- base_model: gokuls/HBERTv1_48_L4_H768_A12 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: HBERTv1_48_L4_H768_A12_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9015 --- # HBERTv1_48_L4_H768_A12_emotion This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H768_A12](https://huggingface.co/gokuls/HBERTv1_48_L4_H768_A12) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2888 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7469 | 1.0 | 250 | 0.3713 | 0.883 | | 0.296 | 2.0 | 500 | 0.2890 | 0.893 | | 0.2249 | 3.0 | 750 | 0.2888 | 0.9015 | | 0.1672 | 4.0 | 1000 | 0.3253 | 0.899 | | 0.1294 | 5.0 | 1250 | 0.3908 | 0.887 | | 0.1003 | 6.0 | 1500 | 0.4053 | 0.8965 | | 0.0755 | 7.0 | 1750 | 0.4338 | 0.897 | | 0.0566 | 8.0 | 2000 | 0.4625 | 0.895 | | 0.0399 | 9.0 | 2250 | 0.5459 | 0.892 | | 0.0293 | 10.0 | 2500 | 0.5511 | 0.8945 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0