--- base_model: gokuls/HBERTv1_48_L4_H768_A12 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L4_H768_A12_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8726020659124447 --- # HBERTv1_48_L4_H768_A12_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H768_A12](https://huggingface.co/gokuls/HBERTv1_48_L4_H768_A12) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.7904 - Accuracy: 0.8726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.714 | 1.0 | 180 | 0.7757 | 0.7826 | | 0.6529 | 2.0 | 360 | 0.6221 | 0.8328 | | 0.4238 | 3.0 | 540 | 0.5757 | 0.8544 | | 0.2832 | 4.0 | 720 | 0.5940 | 0.8544 | | 0.2056 | 5.0 | 900 | 0.6066 | 0.8495 | | 0.1417 | 6.0 | 1080 | 0.6677 | 0.8559 | | 0.0983 | 7.0 | 1260 | 0.6791 | 0.8519 | | 0.0741 | 8.0 | 1440 | 0.7092 | 0.8495 | | 0.0495 | 9.0 | 1620 | 0.7061 | 0.8687 | | 0.0356 | 10.0 | 1800 | 0.7682 | 0.8633 | | 0.0243 | 11.0 | 1980 | 0.7785 | 0.8623 | | 0.0144 | 12.0 | 2160 | 0.7833 | 0.8677 | | 0.0099 | 13.0 | 2340 | 0.7941 | 0.8711 | | 0.0063 | 14.0 | 2520 | 0.7904 | 0.8726 | | 0.0037 | 15.0 | 2700 | 0.8014 | 0.8677 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0