Model save
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: HBERTv1_emb_compress_48_L10_H768_A12
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# HBERTv1_emb_compress_48_L10_H768_A12
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 4.1749
|
19 |
+
- Accuracy: 0.3704
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 48
|
40 |
+
- eval_batch_size: 48
|
41 |
+
- seed: 10
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 10000
|
46 |
+
- num_epochs: 5
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
52 |
+
| 7.1074 | 0.08 | 10000 | 7.0838 | 0.0828 |
|
53 |
+
| 6.6784 | 0.16 | 20000 | 6.6795 | 0.1075 |
|
54 |
+
| 6.535 | 0.25 | 30000 | 6.5322 | 0.1192 |
|
55 |
+
| 6.4482 | 0.33 | 40000 | 6.4390 | 0.1267 |
|
56 |
+
| 6.3716 | 0.41 | 50000 | 6.3711 | 0.1324 |
|
57 |
+
| 6.3233 | 0.49 | 60000 | 6.3219 | 0.1351 |
|
58 |
+
| 6.2821 | 0.57 | 70000 | 6.2781 | 0.1383 |
|
59 |
+
| 6.251 | 0.66 | 80000 | 6.2431 | 0.1408 |
|
60 |
+
| 6.2159 | 0.74 | 90000 | 6.2111 | 0.1425 |
|
61 |
+
| 6.1838 | 0.82 | 100000 | 6.1774 | 0.1444 |
|
62 |
+
| 6.1338 | 0.9 | 110000 | 6.1349 | 0.1464 |
|
63 |
+
| 6.1022 | 0.98 | 120000 | 6.0939 | 0.1481 |
|
64 |
+
| 6.0194 | 1.07 | 130000 | 6.0080 | 0.1517 |
|
65 |
+
| 5.9309 | 1.15 | 140000 | 5.9199 | 0.1642 |
|
66 |
+
| 5.8593 | 1.23 | 150000 | 5.8326 | 0.1769 |
|
67 |
+
| 5.7093 | 1.31 | 160000 | 5.6659 | 0.2040 |
|
68 |
+
| 5.5018 | 1.39 | 170000 | 5.4433 | 0.2339 |
|
69 |
+
| 5.3036 | 1.47 | 180000 | 5.2292 | 0.2576 |
|
70 |
+
| 5.0629 | 1.56 | 190000 | 4.9895 | 0.2834 |
|
71 |
+
| 4.8311 | 1.64 | 200000 | 4.7638 | 0.3085 |
|
72 |
+
| 4.6239 | 1.72 | 210000 | 4.5799 | 0.3278 |
|
73 |
+
| 4.4305 | 1.8 | 220000 | 4.3821 | 0.3471 |
|
74 |
+
| 4.2209 | 1.88 | 230000 | 4.1749 | 0.3704 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.33.2
|
80 |
+
- Pytorch 1.14.0a0+410ce96
|
81 |
+
- Datasets 2.14.5
|
82 |
+
- Tokenizers 0.13.3
|