--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: add_BERT_no_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # add_BERT_no_pretrain_wnli This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6852 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9529 | 1.0 | 5 | 0.6860 | 0.5634 | | 0.762 | 2.0 | 10 | 0.8068 | 0.4366 | | 0.7199 | 3.0 | 15 | 0.6987 | 0.4366 | | 0.7092 | 4.0 | 20 | 0.6958 | 0.5634 | | 0.7149 | 5.0 | 25 | 0.6854 | 0.5634 | | 0.7069 | 6.0 | 30 | 0.6956 | 0.4366 | | 0.7008 | 7.0 | 35 | 0.6986 | 0.4366 | | 0.7079 | 8.0 | 40 | 0.6852 | 0.5634 | | 0.7444 | 9.0 | 45 | 0.7382 | 0.4366 | | 0.7147 | 10.0 | 50 | 0.7009 | 0.5634 | | 0.7318 | 11.0 | 55 | 0.7316 | 0.4366 | | 0.7212 | 12.0 | 60 | 0.6858 | 0.5634 | | 0.7043 | 13.0 | 65 | 0.7075 | 0.4366 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3