File size: 2,096 Bytes
1cd0914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: add_bert_12_layer_model_complete_training_new_72
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# add_bert_12_layer_model_complete_training_new_72

This model is a fine-tuned version of [gokuls/add_bert_12_layer_model_complete_training_new_48](https://huggingface.co/gokuls/add_bert_12_layer_model_complete_training_new_48) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5543
- Accuracy: 0.1759

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 5.8144        | 0.08  | 10000  | 5.7474          | 0.1593   |
| 5.7889        | 0.16  | 20000  | 5.7204          | 0.1604   |
| 5.6347        | 0.25  | 30000  | 5.6966          | 0.1623   |
| 5.7138        | 0.33  | 40000  | 5.6725          | 0.1636   |
| 5.6769        | 0.41  | 50000  | 5.6518          | 0.1658   |
| 5.6603        | 0.49  | 60000  | 5.6290          | 0.1686   |
| 5.5852        | 0.57  | 70000  | 5.6076          | 0.1707   |
| 5.6607        | 0.66  | 80000  | 5.5906          | 0.1720   |
| 5.5823        | 0.74  | 90000  | 5.5719          | 0.1739   |
| 5.6124        | 0.82  | 100000 | 5.5543          | 0.1759   |


### Framework versions

- Transformers 4.30.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3