--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_48_KD_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8117487014593124 - name: F1 type: f1 value: 0.7245086328591595 --- # hBERTv1_new_pretrain_48_KD_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4106 - Accuracy: 0.8117 - F1: 0.7245 - Combined Score: 0.7681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5016 | 1.0 | 2843 | 0.4533 | 0.7776 | 0.6963 | 0.7370 | | 0.4125 | 2.0 | 5686 | 0.4433 | 0.8023 | 0.7269 | 0.7646 | | 0.3574 | 3.0 | 8529 | 0.4106 | 0.8117 | 0.7245 | 0.7681 | | 0.3134 | 4.0 | 11372 | 0.4395 | 0.8208 | 0.7461 | 0.7834 | | 0.279 | 5.0 | 14215 | 0.4975 | 0.8236 | 0.7627 | 0.7931 | | 0.248 | 6.0 | 17058 | 0.5527 | 0.8129 | 0.7066 | 0.7598 | | 0.2215 | 7.0 | 19901 | 0.4814 | 0.8209 | 0.7697 | 0.7953 | | 0.1998 | 8.0 | 22744 | 0.4820 | 0.8272 | 0.7702 | 0.7987 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3