--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_48_emb_com_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.789463269849122 - name: F1 type: f1 value: 0.7288135593220338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hBERTv1_new_pretrain_48_emb_com_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4383 - Accuracy: 0.7895 - F1: 0.7288 - Combined Score: 0.7591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5492 | 1.0 | 2843 | 0.5130 | 0.7537 | 0.6393 | 0.6965 | | 0.4928 | 2.0 | 5686 | 0.4971 | 0.7602 | 0.6526 | 0.7064 | | 0.4578 | 3.0 | 8529 | 0.4656 | 0.7775 | 0.6825 | 0.7300 | | 0.4346 | 4.0 | 11372 | 0.4565 | 0.7804 | 0.6744 | 0.7274 | | 0.4146 | 5.0 | 14215 | 0.4783 | 0.7812 | 0.7078 | 0.7445 | | 0.3952 | 6.0 | 17058 | 0.4675 | 0.7899 | 0.7042 | 0.7470 | | 0.3747 | 7.0 | 19901 | 0.4383 | 0.7895 | 0.7288 | 0.7591 | | 0.355 | 8.0 | 22744 | 0.4455 | 0.7948 | 0.7053 | 0.7500 | | 0.3362 | 9.0 | 25587 | 0.4483 | 0.7935 | 0.7334 | 0.7635 | | 0.3185 | 10.0 | 28430 | 0.4480 | 0.7956 | 0.7388 | 0.7672 | | 0.301 | 11.0 | 31273 | 0.4630 | 0.8055 | 0.7236 | 0.7646 | | 0.2848 | 12.0 | 34116 | 0.4850 | 0.8062 | 0.7352 | 0.7707 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3