update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- glue
|
6 |
+
metrics:
|
7 |
+
- spearmanr
|
8 |
+
model-index:
|
9 |
+
- name: hBERTv1_new_pretrain_48_emb_com_stsb
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Text Classification
|
13 |
+
type: text-classification
|
14 |
+
dataset:
|
15 |
+
name: glue
|
16 |
+
type: glue
|
17 |
+
config: stsb
|
18 |
+
split: validation
|
19 |
+
args: stsb
|
20 |
+
metrics:
|
21 |
+
- name: Spearmanr
|
22 |
+
type: spearmanr
|
23 |
+
value: 0.4507892146083376
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# hBERTv1_new_pretrain_48_emb_com_stsb
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48) on the glue dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 1.9571
|
34 |
+
- Pearson: 0.4588
|
35 |
+
- Spearmanr: 0.4508
|
36 |
+
- Combined Score: 0.4548
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 4e-05
|
56 |
+
- train_batch_size: 128
|
57 |
+
- eval_batch_size: 128
|
58 |
+
- seed: 10
|
59 |
+
- distributed_type: multi-GPU
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
|
68 |
+
| 2.5817 | 1.0 | 45 | 2.6028 | 0.2027 | 0.1896 | 0.1962 |
|
69 |
+
| 2.1023 | 2.0 | 90 | 2.1596 | 0.2035 | 0.1938 | 0.1986 |
|
70 |
+
| 1.9567 | 3.0 | 135 | 2.3409 | 0.1855 | 0.1931 | 0.1893 |
|
71 |
+
| 1.7201 | 4.0 | 180 | 2.1790 | 0.2865 | 0.2934 | 0.2899 |
|
72 |
+
| 1.5153 | 5.0 | 225 | 2.1208 | 0.3381 | 0.3352 | 0.3367 |
|
73 |
+
| 1.2674 | 6.0 | 270 | 2.1224 | 0.3882 | 0.3898 | 0.3890 |
|
74 |
+
| 1.0115 | 7.0 | 315 | 2.2253 | 0.4304 | 0.4281 | 0.4293 |
|
75 |
+
| 0.7449 | 8.0 | 360 | 2.3235 | 0.4236 | 0.4323 | 0.4279 |
|
76 |
+
| 0.66 | 9.0 | 405 | 2.3617 | 0.4340 | 0.4351 | 0.4346 |
|
77 |
+
| 0.4678 | 10.0 | 450 | 2.0741 | 0.4300 | 0.4258 | 0.4279 |
|
78 |
+
| 0.4438 | 11.0 | 495 | 2.3816 | 0.4285 | 0.4294 | 0.4289 |
|
79 |
+
| 0.3192 | 12.0 | 540 | 2.1673 | 0.4580 | 0.4602 | 0.4591 |
|
80 |
+
| 0.2481 | 13.0 | 585 | 2.1544 | 0.4392 | 0.4357 | 0.4374 |
|
81 |
+
| 0.2296 | 14.0 | 630 | 2.0075 | 0.4603 | 0.4582 | 0.4593 |
|
82 |
+
| 0.1765 | 15.0 | 675 | 2.1395 | 0.4624 | 0.4617 | 0.4621 |
|
83 |
+
| 0.1533 | 16.0 | 720 | 2.2715 | 0.4512 | 0.4427 | 0.4469 |
|
84 |
+
| 0.1343 | 17.0 | 765 | 2.1726 | 0.4441 | 0.4417 | 0.4429 |
|
85 |
+
| 0.1373 | 18.0 | 810 | 2.0223 | 0.4532 | 0.4424 | 0.4478 |
|
86 |
+
| 0.1277 | 19.0 | 855 | 1.9992 | 0.4395 | 0.4299 | 0.4347 |
|
87 |
+
| 0.0968 | 20.0 | 900 | 2.1078 | 0.4620 | 0.4601 | 0.4610 |
|
88 |
+
| 0.084 | 21.0 | 945 | 2.0684 | 0.4627 | 0.4577 | 0.4602 |
|
89 |
+
| 0.0777 | 22.0 | 990 | 1.9214 | 0.4648 | 0.4600 | 0.4624 |
|
90 |
+
| 0.0572 | 23.0 | 1035 | 2.0636 | 0.4506 | 0.4422 | 0.4464 |
|
91 |
+
| 0.0615 | 24.0 | 1080 | 2.0404 | 0.4489 | 0.4388 | 0.4438 |
|
92 |
+
| 0.0516 | 25.0 | 1125 | 2.0599 | 0.4516 | 0.4435 | 0.4475 |
|
93 |
+
| 0.0501 | 26.0 | 1170 | 2.0359 | 0.4530 | 0.4489 | 0.4510 |
|
94 |
+
| 0.0515 | 27.0 | 1215 | 1.9571 | 0.4588 | 0.4508 | 0.4548 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.30.2
|
100 |
+
- Pytorch 1.14.0a0+410ce96
|
101 |
+
- Datasets 2.12.0
|
102 |
+
- Tokenizers 0.13.3
|