--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_new_pretrain_48_emb_com_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.45996385438365645 --- # hBERTv1_new_pretrain_48_emb_com_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.9214 - Pearson: 0.4648 - Spearmanr: 0.4600 - Combined Score: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.5817 | 1.0 | 45 | 2.6028 | 0.2027 | 0.1896 | 0.1962 | | 2.1023 | 2.0 | 90 | 2.1596 | 0.2035 | 0.1938 | 0.1986 | | 1.9567 | 3.0 | 135 | 2.3409 | 0.1855 | 0.1931 | 0.1893 | | 1.7201 | 4.0 | 180 | 2.1790 | 0.2865 | 0.2934 | 0.2899 | | 1.5153 | 5.0 | 225 | 2.1208 | 0.3381 | 0.3352 | 0.3367 | | 1.2674 | 6.0 | 270 | 2.1224 | 0.3882 | 0.3898 | 0.3890 | | 1.0115 | 7.0 | 315 | 2.2253 | 0.4304 | 0.4281 | 0.4293 | | 0.7449 | 8.0 | 360 | 2.3235 | 0.4236 | 0.4323 | 0.4279 | | 0.66 | 9.0 | 405 | 2.3617 | 0.4340 | 0.4351 | 0.4346 | | 0.4678 | 10.0 | 450 | 2.0741 | 0.4300 | 0.4258 | 0.4279 | | 0.4438 | 11.0 | 495 | 2.3816 | 0.4285 | 0.4294 | 0.4289 | | 0.3192 | 12.0 | 540 | 2.1673 | 0.4580 | 0.4602 | 0.4591 | | 0.2481 | 13.0 | 585 | 2.1544 | 0.4392 | 0.4357 | 0.4374 | | 0.2296 | 14.0 | 630 | 2.0075 | 0.4603 | 0.4582 | 0.4593 | | 0.1765 | 15.0 | 675 | 2.1395 | 0.4624 | 0.4617 | 0.4621 | | 0.1533 | 16.0 | 720 | 2.2715 | 0.4512 | 0.4427 | 0.4469 | | 0.1343 | 17.0 | 765 | 2.1726 | 0.4441 | 0.4417 | 0.4429 | | 0.1373 | 18.0 | 810 | 2.0223 | 0.4532 | 0.4424 | 0.4478 | | 0.1277 | 19.0 | 855 | 1.9992 | 0.4395 | 0.4299 | 0.4347 | | 0.0968 | 20.0 | 900 | 2.1078 | 0.4620 | 0.4601 | 0.4610 | | 0.084 | 21.0 | 945 | 2.0684 | 0.4627 | 0.4577 | 0.4602 | | 0.0777 | 22.0 | 990 | 1.9214 | 0.4648 | 0.4600 | 0.4624 | | 0.0572 | 23.0 | 1035 | 2.0636 | 0.4506 | 0.4422 | 0.4464 | | 0.0615 | 24.0 | 1080 | 2.0404 | 0.4489 | 0.4388 | 0.4438 | | 0.0516 | 25.0 | 1125 | 2.0599 | 0.4516 | 0.4435 | 0.4475 | | 0.0501 | 26.0 | 1170 | 2.0359 | 0.4530 | 0.4489 | 0.4510 | | 0.0515 | 27.0 | 1215 | 1.9571 | 0.4588 | 0.4508 | 0.4548 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3