File size: 2,546 Bytes
2b580ca e12894e 2b580ca e12894e 2b580ca e12894e 2b580ca e12894e 2b580ca e12894e 2b580ca e12894e 2b580ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv1_new_pretrain_48_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7058823529411765
- name: F1
type: f1
value: 0.8058252427184466
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_new_pretrain_48_mrpc
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5714
- Accuracy: 0.7059
- F1: 0.8058
- Combined Score: 0.7559
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6764 | 1.0 | 29 | 0.5974 | 0.6887 | 0.8096 | 0.7492 |
| 0.6341 | 2.0 | 58 | 0.6032 | 0.6838 | 0.7962 | 0.7400 |
| 0.5778 | 3.0 | 87 | 0.5714 | 0.7059 | 0.8058 | 0.7559 |
| 0.4891 | 4.0 | 116 | 0.6448 | 0.7132 | 0.8104 | 0.7618 |
| 0.3469 | 5.0 | 145 | 0.8814 | 0.6593 | 0.7504 | 0.7049 |
| 0.2429 | 6.0 | 174 | 0.8431 | 0.6740 | 0.7654 | 0.7197 |
| 0.1749 | 7.0 | 203 | 1.0049 | 0.7010 | 0.7918 | 0.7464 |
| 0.1434 | 8.0 | 232 | 1.1036 | 0.6765 | 0.7634 | 0.7200 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3
|