--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_48_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7058823529411765 - name: F1 type: f1 value: 0.8058252427184466 --- # hBERTv1_new_pretrain_48_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5714 - Accuracy: 0.7059 - F1: 0.8058 - Combined Score: 0.7559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6764 | 1.0 | 29 | 0.5974 | 0.6887 | 0.8096 | 0.7492 | | 0.6341 | 2.0 | 58 | 0.6032 | 0.6838 | 0.7962 | 0.7400 | | 0.5778 | 3.0 | 87 | 0.5714 | 0.7059 | 0.8058 | 0.7559 | | 0.4891 | 4.0 | 116 | 0.6448 | 0.7132 | 0.8104 | 0.7618 | | 0.3469 | 5.0 | 145 | 0.8814 | 0.6593 | 0.7504 | 0.7049 | | 0.2429 | 6.0 | 174 | 0.8431 | 0.6740 | 0.7654 | 0.7197 | | 0.1749 | 7.0 | 203 | 1.0049 | 0.7010 | 0.7918 | 0.7464 | | 0.1434 | 8.0 | 232 | 1.1036 | 0.6765 | 0.7634 | 0.7200 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3