--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- # hBERTv1_new_pretrain_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6018 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6855 | 1.0 | 29 | 0.6255 | 0.6838 | 0.8122 | 0.7480 | | 0.647 | 2.0 | 58 | 0.6536 | 0.6838 | 0.8122 | 0.7480 | | 0.6336 | 3.0 | 87 | 0.6537 | 0.6838 | 0.8122 | 0.7480 | | 0.6007 | 4.0 | 116 | 0.6018 | 0.6838 | 0.8122 | 0.7480 | | 0.5196 | 5.0 | 145 | 0.6852 | 0.6544 | 0.7273 | 0.6908 | | 0.3703 | 6.0 | 174 | 0.7167 | 0.6838 | 0.7709 | 0.7273 | | 0.2697 | 7.0 | 203 | 0.9072 | 0.7010 | 0.7953 | 0.7481 | | 0.1997 | 8.0 | 232 | 1.0467 | 0.6765 | 0.7651 | 0.7208 | | 0.1629 | 9.0 | 261 | 1.0809 | 0.6593 | 0.7495 | 0.7044 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3