File size: 1,939 Bytes
1594345 98c7af4 1594345 98c7af4 1594345 98c7af4 1594345 98c7af4 1594345 98c7af4 1594345 e3988e0 1594345 e3988e0 1594345 e3988e0 1594345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_no_pretrain_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8107798165137615
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_no_pretrain_sst2
This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4434
- Accuracy: 0.8108
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4323 | 1.0 | 702 | 0.4434 | 0.8108 |
| 0.2664 | 2.0 | 1404 | 0.5413 | 0.8016 |
| 0.2222 | 3.0 | 2106 | 0.5243 | 0.8131 |
| 0.2092 | 4.0 | 2808 | 0.6013 | 0.8005 |
| 0.2346 | 5.0 | 3510 | 0.4992 | 0.8028 |
| 0.2444 | 6.0 | 4212 | 0.5317 | 0.8005 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3
|