--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_no_pretrain_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8107798165137615 --- # hBERTv1_no_pretrain_sst2 This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4434 - Accuracy: 0.8108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4323 | 1.0 | 702 | 0.4434 | 0.8108 | | 0.2664 | 2.0 | 1404 | 0.5413 | 0.8016 | | 0.2222 | 3.0 | 2106 | 0.5243 | 0.8131 | | 0.2092 | 4.0 | 2808 | 0.6013 | 0.8005 | | 0.2346 | 5.0 | 3510 | 0.4992 | 0.8028 | | 0.2444 | 6.0 | 4212 | 0.5317 | 0.8005 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3