--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv1_no_pretrain_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.21371019463671115 --- # hBERTv1_no_pretrain_stsb This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.1733 - Pearson: 0.2374 - Spearmanr: 0.2137 - Combined Score: 0.2256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.3601 | 1.0 | 60 | 2.6639 | 0.1059 | 0.1080 | 0.1069 | | 1.9983 | 2.0 | 120 | 2.1733 | 0.2374 | 0.2137 | 0.2256 | | 1.7079 | 3.0 | 180 | 2.5000 | 0.1872 | 0.1967 | 0.1920 | | 1.3775 | 4.0 | 240 | 3.1203 | 0.2177 | 0.2251 | 0.2214 | | 1.1218 | 5.0 | 300 | 2.8260 | 0.2609 | 0.2598 | 0.2603 | | 0.8882 | 6.0 | 360 | 2.5413 | 0.3099 | 0.3062 | 0.3081 | | 0.728 | 7.0 | 420 | 2.4024 | 0.3429 | 0.3468 | 0.3448 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3