--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv2_new_pretrain_48_emb_com_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.805045871559633 --- # hBERTv2_new_pretrain_48_emb_com_sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4789 - Accuracy: 0.8050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4943 | 1.0 | 527 | 0.5216 | 0.7454 | | 0.3354 | 2.0 | 1054 | 0.5366 | 0.7913 | | 0.274 | 3.0 | 1581 | 0.5091 | 0.7982 | | 0.2347 | 4.0 | 2108 | 0.5886 | 0.7970 | | 0.2094 | 5.0 | 2635 | 0.4789 | 0.8050 | | 0.1944 | 6.0 | 3162 | 0.5025 | 0.7993 | | 0.1826 | 7.0 | 3689 | 0.6511 | 0.7901 | | 0.1642 | 8.0 | 4216 | 0.5241 | 0.7993 | | 0.1516 | 9.0 | 4743 | 0.6334 | 0.8016 | | 0.1462 | 10.0 | 5270 | 0.6750 | 0.7913 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3