--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: hBERTv2_new_pretrain_48_emb_com_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.30729552140330846 --- # hBERTv2_new_pretrain_48_emb_com_stsb This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.0889 - Pearson: 0.3123 - Spearmanr: 0.3073 - Combined Score: 0.3098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.398 | 1.0 | 45 | 3.0621 | 0.0972 | 0.1007 | 0.0990 | | 2.0392 | 2.0 | 90 | 2.3674 | 0.1058 | 0.1011 | 0.1034 | | 1.967 | 3.0 | 135 | 2.2296 | 0.1449 | 0.1432 | 0.1441 | | 1.8176 | 4.0 | 180 | 2.6036 | 0.2055 | 0.2169 | 0.2112 | | 1.6744 | 5.0 | 225 | 2.2119 | 0.2516 | 0.2534 | 0.2525 | | 1.4727 | 6.0 | 270 | 2.0889 | 0.3123 | 0.3073 | 0.3098 | | 1.1852 | 7.0 | 315 | 2.6372 | 0.3609 | 0.3543 | 0.3576 | | 0.9895 | 8.0 | 360 | 2.5881 | 0.3312 | 0.3322 | 0.3317 | | 0.8254 | 9.0 | 405 | 2.1746 | 0.3991 | 0.3974 | 0.3983 | | 0.6759 | 10.0 | 450 | 2.7671 | 0.3693 | 0.3663 | 0.3678 | | 0.558 | 11.0 | 495 | 2.5954 | 0.3967 | 0.3942 | 0.3955 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3