gokuls commited on
Commit
f3b04de
·
1 Parent(s): fdbdef6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: hBERTv2_rte
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: glue
16
+ type: glue
17
+ config: rte
18
+ split: validation
19
+ args: rte
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.5234657039711191
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # hBERTv2_rte
30
+
31
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2](https://huggingface.co/gokuls/bert_12_layer_model_v2) on the glue dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.8160
34
+ - Accuracy: 0.5235
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5e-05
54
+ - train_batch_size: 256
55
+ - eval_batch_size: 256
56
+ - seed: 10
57
+ - distributed_type: multi-GPU
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 50
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.7231 | 1.0 | 10 | 0.7175 | 0.4549 |
68
+ | 0.702 | 2.0 | 20 | 0.7053 | 0.4729 |
69
+ | 0.6982 | 3.0 | 30 | 0.6976 | 0.4585 |
70
+ | 0.7008 | 4.0 | 40 | 0.7261 | 0.4657 |
71
+ | 0.7022 | 5.0 | 50 | 0.7142 | 0.4946 |
72
+ | 0.6867 | 6.0 | 60 | 0.6943 | 0.4801 |
73
+ | 0.6796 | 7.0 | 70 | 0.6896 | 0.5487 |
74
+ | 0.6614 | 8.0 | 80 | 0.7151 | 0.5162 |
75
+ | 0.6303 | 9.0 | 90 | 0.7244 | 0.5271 |
76
+ | 0.602 | 10.0 | 100 | 0.7570 | 0.4729 |
77
+ | 0.5761 | 11.0 | 110 | 0.7605 | 0.5379 |
78
+ | 0.5664 | 12.0 | 120 | 0.8160 | 0.5235 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.26.1
84
+ - Pytorch 1.14.0a0+410ce96
85
+ - Datasets 2.10.1
86
+ - Tokenizers 0.13.2