--- license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer metrics: - accuracy model-index: - name: whisper-base.en-fsc results: [] --- # whisper-base.en-fsc This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0437 - Accuracy: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9959 | 120 | 0.0862 | 0.9739 | | No log | 2.0 | 241 | 0.0422 | 0.9866 | | No log | 2.9959 | 361 | 0.0630 | 0.9823 | | No log | 4.0 | 482 | 0.0630 | 0.9805 | | No log | 4.9959 | 602 | 0.0626 | 0.9821 | | No log | 6.0 | 723 | 0.0339 | 0.9905 | | No log | 6.9959 | 843 | 0.0452 | 0.9897 | | No log | 8.0 | 964 | 0.0527 | 0.9834 | | 0.1514 | 8.9959 | 1084 | 0.0637 | 0.9868 | | 0.1514 | 10.0 | 1205 | 0.0443 | 0.9921 | | 0.1514 | 10.9959 | 1325 | 0.0306 | 0.9937 | | 0.1514 | 12.0 | 1446 | 0.0416 | 0.9897 | | 0.1514 | 12.9959 | 1566 | 0.0363 | 0.9910 | | 0.1514 | 14.0 | 1687 | 0.0413 | 0.9924 | | 0.1514 | 14.9959 | 1807 | 0.0344 | 0.9945 | | 0.1514 | 16.0 | 1928 | 0.0508 | 0.9924 | | 0.0161 | 16.9959 | 2048 | 0.0436 | 0.9937 | | 0.0161 | 18.0 | 2169 | 0.0435 | 0.9931 | | 0.0161 | 18.9959 | 2289 | 0.0428 | 0.9945 | | 0.0161 | 20.0 | 2410 | 0.0425 | 0.9947 | | 0.0161 | 20.9959 | 2530 | 0.0432 | 0.9947 | | 0.0161 | 22.0 | 2651 | 0.0438 | 0.9947 | | 0.0161 | 22.9959 | 2771 | 0.0437 | 0.9950 | | 0.0161 | 24.0 | 2892 | 0.0438 | 0.9950 | | 0.0011 | 24.8963 | 3000 | 0.0438 | 0.9950 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1