--- license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-base.en-speech-commands-h results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.7922661870503597 --- # whisper-base.en-speech-commands-h This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.3313 - Accuracy: 0.7923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3859 | 1.0 | 412 | 1.3474 | 0.7707 | | 0.2732 | 2.0 | 824 | 1.2471 | 0.7599 | | 0.2373 | 3.0 | 1236 | 1.2114 | 0.7729 | | 0.1694 | 4.0 | 1648 | 1.1600 | 0.7914 | | 0.1495 | 5.0 | 2060 | 1.1535 | 0.7914 | | 0.1931 | 6.0 | 2472 | 1.1446 | 0.7860 | | 0.1329 | 7.0 | 2884 | 1.3313 | 0.7923 | | 0.0731 | 8.0 | 3296 | 1.2812 | 0.7860 | | 0.0702 | 9.0 | 3708 | 1.2134 | 0.7873 | | 0.0828 | 10.0 | 4120 | 1.6292 | 0.7887 | | 0.08 | 11.0 | 4532 | 1.4677 | 0.7797 | | 0.0481 | 12.0 | 4944 | 1.3770 | 0.7909 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1