--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-tiny-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8039568345323741 --- # whisper-tiny-speech-commands This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.3232 - Accuracy: 0.8040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4229 | 1.0 | 412 | 1.1286 | 0.7936 | | 0.1396 | 2.0 | 824 | 1.0506 | 0.7995 | | 0.1323 | 3.0 | 1236 | 1.1224 | 0.7977 | | 0.0528 | 4.0 | 1648 | 1.0810 | 0.8004 | | 0.0889 | 5.0 | 2060 | 0.9224 | 0.8022 | | 0.076 | 6.0 | 2472 | 1.0393 | 0.7981 | | 0.0429 | 7.0 | 2884 | 1.1115 | 0.7990 | | 0.0007 | 8.0 | 3296 | 1.1706 | 0.8026 | | 0.0129 | 9.0 | 3708 | 1.0661 | 0.8013 | | 0.0161 | 10.0 | 4120 | 1.0114 | 0.7990 | | 0.0205 | 11.0 | 4532 | 1.2129 | 0.8031 | | 0.0107 | 12.0 | 4944 | 1.1118 | 0.8026 | | 0.0099 | 13.0 | 5356 | 0.9145 | 0.8031 | | 0.0002 | 14.0 | 5768 | 1.1582 | 0.7999 | | 0.0001 | 15.0 | 6180 | 1.2959 | 0.8035 | | 0.0163 | 16.0 | 6592 | 1.0992 | 0.8026 | | 0.0001 | 17.0 | 7004 | 1.2913 | 0.8035 | | 0.0003 | 18.0 | 7416 | 1.3232 | 0.8040 | | 0.0001 | 19.0 | 7828 | 1.3720 | 0.8040 | | 0.0001 | 20.0 | 8240 | 1.3889 | 0.8040 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1