--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-2_H-256_A-4_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7475490196078431 - name: F1 type: f1 value: 0.835725677830941 --- # bert_uncased_L-2_H-256_A-4_mrpc This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co/google/bert_uncased_L-2_H-256_A-4) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5344 - Accuracy: 0.7475 - F1: 0.8357 - Combined Score: 0.7916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.619 | 1.0 | 15 | 0.5956 | 0.6887 | 0.8146 | 0.7517 | | 0.5893 | 2.0 | 30 | 0.5835 | 0.7010 | 0.8179 | 0.7594 | | 0.5612 | 3.0 | 45 | 0.5597 | 0.7059 | 0.8171 | 0.7615 | | 0.5397 | 4.0 | 60 | 0.5398 | 0.7377 | 0.8320 | 0.7849 | | 0.5063 | 5.0 | 75 | 0.5358 | 0.7426 | 0.8336 | 0.7881 | | 0.476 | 6.0 | 90 | 0.5344 | 0.7475 | 0.8357 | 0.7916 | | 0.4361 | 7.0 | 105 | 0.5515 | 0.7451 | 0.8349 | 0.7900 | | 0.4014 | 8.0 | 120 | 0.5508 | 0.75 | 0.8365 | 0.7933 | | 0.3684 | 9.0 | 135 | 0.5901 | 0.7304 | 0.8254 | 0.7779 | | 0.3396 | 10.0 | 150 | 0.5755 | 0.7426 | 0.8276 | 0.7851 | | 0.3061 | 11.0 | 165 | 0.5943 | 0.75 | 0.8317 | 0.7908 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3