goldfish-models commited on
Commit
b9bb7e9
·
verified ·
1 Parent(s): a82b4a4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - roh
6
+ datasets:
7
+ - allenai/MADLAD-400
8
+ - cis-lmu/Glot500
9
+ - statmt/cc100
10
+ - legacy-datasets/wikipedia
11
+ - oscar-corpus/OSCAR-2109
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - goldfish
16
+
17
+ ---
18
+
19
+ # roh_latn_5mb
20
+
21
+ Goldfish is a suite of monolingual language models trained for 350 languages.
22
+ This model is the <b>Romansh</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 1.27; content-matched text in Romansh takes on average 1.27x as many UTF-8 bytes to encode as English.
23
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
24
+
25
+ Note: roh_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
26
+
27
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
28
+
29
+ Training code and sample usage: https://github.com/tylerachang/goldfish
30
+
31
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
32
+
33
+ ## Model details:
34
+
35
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
36
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
37
+ Details for this model specifically:
38
+
39
+ * Architecture: gpt2
40
+ * Parameters: 39087104
41
+ * Maximum sequence length: 512 tokens
42
+ * Training text data (raw): 6.37MB
43
+ * Training text data (byte premium scaled): 5.005MB
44
+ * Training tokens: 1427968 (x10 epochs)
45
+ * Vocabulary size: 50000
46
+ * Compute cost: 1079325118955520.0 FLOPs or ~0.1 NVIDIA A6000 GPU hours
47
+
48
+ Training datasets (percentages prior to deduplication):
49
+ * 55.92821%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
50
+ * 34.71848%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [CC100](https://huggingface.co/datasets/statmt/cc100), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [OSCAR](https://oscar-project.org/), [Tatoeba](https://tatoeba.org/en/), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia), [WikiMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix)
51
+ * 9.35087%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
52
+ * 0.00179%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
53
+ * 0.00065%: [Tatoeba](https://tatoeba.org/en/)
54
+
55
+
56
+ ## Citation
57
+
58
+ If you use this model, please cite:
59
+
60
+ ```
61
+ @article{chang-etal-2024-goldfish,
62
+ title={Goldfish: Monolingual Language Models for 350 Languages},
63
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
64
+ journal={Preprint},
65
+ year={2024},
66
+ }
67
+ ```