--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1802 - Wer: 6.9921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4228 | 0.38 | 30 | 0.2223 | 8.7717 | | 0.1719 | 0.75 | 60 | 0.1884 | 7.3780 | | 0.1354 | 1.12 | 90 | 0.1769 | 7.1890 | | 0.0727 | 1.5 | 120 | 0.1763 | 7.5591 | | 0.0779 | 1.88 | 150 | 0.1691 | 6.5512 | | 0.0468 | 2.25 | 180 | 0.1698 | 6.7244 | | 0.0316 | 2.62 | 210 | 0.1678 | 6.3386 | | 0.0316 | 3.0 | 240 | 0.1663 | 6.4488 | | 0.0151 | 3.38 | 270 | 0.1770 | 8.3307 | | 0.0143 | 3.75 | 300 | 0.1724 | 9.1024 | | 0.0119 | 4.12 | 330 | 0.1743 | 6.9528 | | 0.0072 | 4.5 | 360 | 0.1788 | 6.9134 | | 0.0069 | 4.88 | 390 | 0.1802 | 6.9921 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0