--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1506 - Wer: 5.1288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4241 | 0.38 | 30 | 0.1816 | 7.9883 | | 0.1734 | 0.75 | 60 | 0.1585 | 6.3247 | | 0.1334 | 1.12 | 90 | 0.1560 | 5.9874 | | 0.0787 | 1.5 | 120 | 0.1468 | 6.0718 | | 0.0745 | 1.88 | 150 | 0.1465 | 7.3674 | | 0.0512 | 2.25 | 180 | 0.1452 | 7.1297 | | 0.0314 | 2.62 | 210 | 0.1405 | 5.4814 | | 0.0321 | 3.0 | 240 | 0.1376 | 5.4125 | | 0.0154 | 3.38 | 270 | 0.1469 | 5.2208 | | 0.0144 | 3.75 | 300 | 0.1493 | 5.2515 | | 0.011 | 4.12 | 330 | 0.1443 | 5.0905 | | 0.0064 | 4.5 | 360 | 0.1502 | 5.1058 | | 0.007 | 4.88 | 390 | 0.1506 | 5.1288 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0