--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3247 - Wer: 13.4709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5388 | 0.49 | 30 | 0.3297 | 12.2434 | | 0.2858 | 0.98 | 60 | 0.2893 | 23.3419 | | 0.143 | 1.48 | 90 | 0.2922 | 13.5327 | | 0.1337 | 1.97 | 120 | 0.2838 | 10.7065 | | 0.0606 | 2.46 | 150 | 0.2905 | 10.3765 | | 0.0557 | 2.95 | 180 | 0.2915 | 10.0258 | | 0.0265 | 3.44 | 210 | 0.3139 | 10.8613 | | 0.0207 | 3.93 | 240 | 0.3094 | 10.0670 | | 0.0098 | 4.43 | 270 | 0.3188 | 12.0578 | | 0.0098 | 4.92 | 300 | 0.3247 | 13.4709 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0