--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3047 - Wer: 8.8078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5556 | 0.49 | 30 | 0.3116 | 14.7321 | | 0.2736 | 0.98 | 60 | 0.2567 | 12.1736 | | 0.1361 | 1.48 | 90 | 0.2769 | 10.2024 | | 0.1364 | 1.97 | 120 | 0.2525 | 9.1643 | | 0.0582 | 2.46 | 150 | 0.2734 | 10.9049 | | 0.0568 | 2.95 | 180 | 0.2669 | 9.2796 | | 0.0289 | 3.44 | 210 | 0.2841 | 8.7973 | | 0.0206 | 3.93 | 240 | 0.2877 | 8.7868 | | 0.0107 | 4.43 | 270 | 0.3009 | 8.8393 | | 0.0089 | 4.92 | 300 | 0.3047 | 8.8078 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0