Commit
·
1b303a9
1
Parent(s):
da91207
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- t5
|
7 |
+
model-index:
|
8 |
+
- name: metro_t0p_largepp
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: natural-language-inference
|
12 |
+
dataset:
|
13 |
+
type: super_glue
|
14 |
+
name: RTE
|
15 |
+
config: rte
|
16 |
+
split: validation
|
17 |
+
metrics:
|
18 |
+
- type: accuracy
|
19 |
+
value: 81.26353790613719
|
20 |
+
- task:
|
21 |
+
type: natural-language-inference
|
22 |
+
dataset:
|
23 |
+
type: super_glue
|
24 |
+
name: CB
|
25 |
+
config: cb
|
26 |
+
split: validation
|
27 |
+
metrics:
|
28 |
+
- type: accuracy
|
29 |
+
value: 70.0
|
30 |
+
- task:
|
31 |
+
type: natural-language-inference
|
32 |
+
dataset:
|
33 |
+
type: anli
|
34 |
+
name: ANLI R1
|
35 |
+
split: dev_r1
|
36 |
+
metrics:
|
37 |
+
- type: accuracy
|
38 |
+
value: 45.059999999999995
|
39 |
+
- task:
|
40 |
+
type: natural-language-inference
|
41 |
+
dataset:
|
42 |
+
type: anli
|
43 |
+
name: ANLI R2
|
44 |
+
split: dev_r2
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 38.593333333333334
|
48 |
+
- task:
|
49 |
+
type: natural-language-inference
|
50 |
+
dataset:
|
51 |
+
type: anli
|
52 |
+
name: ANLI R3
|
53 |
+
split: dev_r3
|
54 |
+
metrics:
|
55 |
+
- type: accuracy
|
56 |
+
value: 42.35
|
57 |
+
- task:
|
58 |
+
type: coreference-resolution
|
59 |
+
dataset:
|
60 |
+
type: super_glue
|
61 |
+
name: WSC
|
62 |
+
config: wsc.fixed
|
63 |
+
split: validation
|
64 |
+
metrics:
|
65 |
+
- type: accuracy
|
66 |
+
value: 60.67307692307692
|
67 |
+
- task:
|
68 |
+
type: coreference-resolution
|
69 |
+
dataset:
|
70 |
+
type: winogrande
|
71 |
+
name: Winogrande XL
|
72 |
+
config: winogrande_xl
|
73 |
+
split: validation
|
74 |
+
metrics:
|
75 |
+
- type: accuracy
|
76 |
+
value: 57.521704814522494
|
77 |
+
- task:
|
78 |
+
type: multiple-choice-qa
|
79 |
+
dataset:
|
80 |
+
type: super_glue
|
81 |
+
name: COPA
|
82 |
+
config: copa
|
83 |
+
split: validation
|
84 |
+
metrics:
|
85 |
+
- type: accuracy
|
86 |
+
value: 90.5
|
87 |
+
- task:
|
88 |
+
type: multiple-choice-qa
|
89 |
+
dataset:
|
90 |
+
type: story_cloze
|
91 |
+
name: StoryCloze 2016
|
92 |
+
config: '2016'
|
93 |
+
split: validation
|
94 |
+
metrics:
|
95 |
+
- type: accuracy
|
96 |
+
value: 95.41421699625869
|
97 |
+
- task:
|
98 |
+
type: multiple-choice-qa
|
99 |
+
dataset:
|
100 |
+
type: hellaswag
|
101 |
+
name: HellaSwag
|
102 |
+
split: validation
|
103 |
+
metrics:
|
104 |
+
- type: accuracy
|
105 |
+
value: 83.81796454889465
|
106 |
+
- task:
|
107 |
+
type: word-sense-disambiguation
|
108 |
+
dataset:
|
109 |
+
type: super_glue
|
110 |
+
name: WiC
|
111 |
+
config: wic
|
112 |
+
split: validation
|
113 |
+
metrics:
|
114 |
+
- type: accuracy
|
115 |
+
value: 52.31974921630094
|
116 |
+
---
|
117 |
+
|
118 |
+
Official repository: https://github.com/gonglinyuan/metro_t0
|
119 |
+
|
120 |
+
# METRO-T0
|
121 |
+
|
122 |
+
Paper: Model-Generated Pretraining Signals Improves Zero-Shot Generalization of Text-to-Text Transformers (TODO) (ACL 2023)
|
123 |
+
|
124 |
+
METRO-T0 is a T5-style text-to-text Transformer pretrained using model-generated pretraining signals, prompt-finetuned on a family of public NLP tasks proposed in [T0](https://arxiv.org/abs/2110.08207).
|
125 |
+
METRO-T0 is highly parameter efficient. For example, METRO-T0-Large++ (775M parameters) outperforms GPT-3 (175B parameters) and T0-3B (3B parameters) on a wide range of NLP tasks.
|
126 |
+
|
127 |
+

|
128 |
+
|
129 |
+

|
130 |
+
|
131 |
+
## Use METRO-T0+-Large++
|
132 |
+
|
133 |
+
To use METRO-T0+-Large++ in PyTorch (Python 3.7+, PyTorch 1.12+ and transformers 4.17+ are prerequisites), refer to the code snippet below:
|
134 |
+
|
135 |
+
```python
|
136 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
137 |
+
|
138 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("gonglinyuan/metro_t0p_largepp", trust_remote_code=True)
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained("gonglinyuan/metro_t0p_largepp", trust_remote_code=True)
|
140 |
+
|
141 |
+
input_text = "Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"
|
142 |
+
inputs = tokenizer([input_text], max_length=512, truncation=True, add_special_tokens=True, return_tensors="pt").input_ids
|
143 |
+
outputs = model.generate(inputs, max_new_tokens=256, do_sample=False)
|
144 |
+
|
145 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # expected: positive
|
146 |
+
```
|
147 |
+
|
148 |
+
## Other METRO-T0 Models
|
149 |
+
|
150 |
+
| | # Parameters | Pretraining Data | Prompt-Finetuning Data |
|
151 |
+
|--------------------|--------------|------------------|------------------------|
|
152 |
+
| [METRO-T0-Base](https://huggingface.co/gonglinyuan/metro_t0_base) | 226M | Wikibook (16G) | T0 Train |
|
153 |
+
| [METRO-T0+-Base](https://huggingface.co/gonglinyuan/metro_t0p_base) | 226M | Wikibook (16G) | T0+ Train |
|
154 |
+
| [METRO-T0++-Base](https://huggingface.co/gonglinyuan/metro_t0pp_base) | 226M | Wikibook (16G) | T0++ Train |
|
155 |
+
| [METRO-T0-Base++](https://huggingface.co/gonglinyuan/metro_t0_basepp) | 256M | 160G corpus | T0 Train |
|
156 |
+
| [METRO-T0+-Base++](https://huggingface.co/gonglinyuan/metro_t0p_basepp) | 256M | 160G corpus | T0+ Train |
|
157 |
+
| [METRO-T0++-Base++](https://huggingface.co/gonglinyuan/metro_t0pp_basepp) | 256M | 160G corpus | T0++ Train |
|
158 |
+
| [METRO-T0-Large++](https://huggingface.co/gonglinyuan/metro_t0_largepp) | 775M | 160G corpus | T0 Train |
|
159 |
+
| [METRO-T0+-Large++](https://huggingface.co/gonglinyuan/metro_t0p_largepp) | 775M | 160G corpus | T0+ Train |
|
160 |
+
| [METRO-T0++-Large++](https://huggingface.co/gonglinyuan/metro_t0pp_largepp) | 775M | 160G corpus | T0++ Train |
|
161 |
+
|
162 |
+
|
163 |
+
## Citation
|
164 |
+
|
165 |
+
If you find the code and models useful for your research, please cite the following paper:
|
166 |
+
|
167 |
+
```
|
168 |
+
TODO
|
169 |
+
```
|