Upload README.md
Browse files
README.md
CHANGED
@@ -1,489 +1,227 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
pipeline_tag: image-text-to-text
|
6 |
-
tags:
|
7 |
-
- multimodal
|
8 |
-
base_model: qwen/Qwen2-VL-2B-Instruct
|
9 |
-
studios:
|
10 |
-
- qwen/Qwen2-VL-2B-Instruct-demo
|
11 |
-
---
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
We have three models with 2, 7 and 72 billion parameters. This repo contains the instruction-tuned 2B Qwen2-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2-vl/) and [GitHub](https://github.com/QwenLM/Qwen2-VL).
|
40 |
|
|
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
| InfoVQA<sub>test</sub> | 58.9 | - | **65.5** |
|
51 |
-
| ChartQA<sub>test</sub> | **76.2** | - | 73.5 |
|
52 |
-
| TextVQA<sub>val</sub> | 73.4 | - | **79.7** |
|
53 |
-
| OCRBench | 781 | 605 | **794** |
|
54 |
-
| MTVQA | - | - | **20.0** |
|
55 |
-
| MMMU<sub>val</sub> | 36.3 | 38.2 | **41.1** |
|
56 |
-
| RealWorldQA | 57.3 | 55.8 | **62.9** |
|
57 |
-
| MME<sub>sum</sub> | **1876.8** | 1808.6 | 1872.0 |
|
58 |
-
| MMBench-EN<sub>test</sub> | 73.2 | 69.1 | **74.9** |
|
59 |
-
| MMBench-CN<sub>test</sub> | 70.9 | 66.5 | **73.5** |
|
60 |
-
| MMBench-V1.1<sub>test</sub> | 69.6 | 65.8 | **72.2** |
|
61 |
-
| MMT-Bench<sub>test</sub> | - | - | **54.5** |
|
62 |
-
| MMStar | **49.8** | 39.1 | 48.0 |
|
63 |
-
| MMVet<sub>GPT-4-Turbo</sub> | 39.7 | 41.0 | **49.5** |
|
64 |
-
| HallBench<sub>avg</sub> | 38.0 | 36.1 | **41.7** |
|
65 |
-
| MathVista<sub>testmini</sub> | **46.0** | 39.8 | 43.0 |
|
66 |
-
| MathVision | - | - | **12.4** |
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
| :--- | :---: |
|
72 |
-
| MVBench | **63.2** |
|
73 |
-
| PerceptionTest<sub>test</sub> | **53.9** |
|
74 |
-
| EgoSchema<sub>test</sub> | **54.9** |
|
75 |
-
| Video-MME<sub>wo/w subs</sub> | **55.6**/**60.4** |
|
76 |
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
```
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
```
|
83 |
|
84 |
-
|
85 |
-
We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
```
|
90 |
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
from qwen_vl_utils import process_vision_info
|
96 |
-
from modelscope import snapshot_download
|
97 |
-
model_dir = snapshot_download("qwen/Qwen2-VL-2B-Instruct")
|
98 |
-
|
99 |
-
# default: Load the model on the available device(s)
|
100 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
101 |
-
model_dir, torch_dtype="auto", device_map="auto"
|
102 |
-
)
|
103 |
-
|
104 |
-
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
105 |
-
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
106 |
-
# model_dir,
|
107 |
-
# torch_dtype=torch.bfloat16,
|
108 |
-
# attn_implementation="flash_attention_2",
|
109 |
-
# device_map="auto",
|
110 |
-
# )
|
111 |
-
|
112 |
-
# default processer
|
113 |
-
processor = AutoProcessor.from_pretrained(model_dir)
|
114 |
-
|
115 |
-
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
116 |
-
# min_pixels = 256*28*28
|
117 |
-
# max_pixels = 1280*28*28
|
118 |
-
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
119 |
-
|
120 |
-
messages = [
|
121 |
-
{
|
122 |
-
"role": "user",
|
123 |
-
"content": [
|
124 |
-
{
|
125 |
-
"type": "image",
|
126 |
-
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
127 |
-
},
|
128 |
-
{"type": "text", "text": "Describe this image."},
|
129 |
-
],
|
130 |
-
}
|
131 |
-
]
|
132 |
-
|
133 |
-
# Preparation for inference
|
134 |
-
text = processor.apply_chat_template(
|
135 |
-
messages, tokenize=False, add_generation_prompt=True
|
136 |
-
)
|
137 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
138 |
-
inputs = processor(
|
139 |
-
text=[text],
|
140 |
-
images=image_inputs,
|
141 |
-
videos=video_inputs,
|
142 |
-
padding=True,
|
143 |
-
return_tensors="pt",
|
144 |
-
)
|
145 |
-
inputs = inputs.to("cuda")
|
146 |
-
|
147 |
-
# Inference: Generation of the output
|
148 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
149 |
-
generated_ids_trimmed = [
|
150 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
151 |
-
]
|
152 |
-
output_text = processor.batch_decode(
|
153 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
154 |
-
)
|
155 |
-
print(output_text)
|
156 |
-
```
|
157 |
-
<details>
|
158 |
-
<summary>Without qwen_vl_utils</summary>
|
159 |
|
160 |
-
```python
|
161 |
-
|
162 |
-
|
163 |
-
import
|
164 |
-
from
|
165 |
-
|
166 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
167 |
-
from modelscope import snapshot_download
|
168 |
-
model_dir = snapshot_download("qwen/Qwen2-VL-2B-Instruct")
|
169 |
-
# Load the model in half-precision on the available device(s)
|
170 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
171 |
-
model_dir, torch_dtype="auto", device_map="auto"
|
172 |
-
)
|
173 |
-
processor = AutoProcessor.from_pretrained(model_dir)
|
174 |
-
|
175 |
-
# Image
|
176 |
-
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
|
177 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
178 |
-
|
179 |
-
conversation = [
|
180 |
-
{
|
181 |
-
"role": "user",
|
182 |
-
"content": [
|
183 |
-
{
|
184 |
-
"type": "image",
|
185 |
-
},
|
186 |
-
{"type": "text", "text": "Describe this image."},
|
187 |
-
],
|
188 |
-
}
|
189 |
-
]
|
190 |
-
|
191 |
-
|
192 |
-
# Preprocess the inputs
|
193 |
-
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
194 |
-
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
|
195 |
-
|
196 |
-
inputs = processor(
|
197 |
-
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
|
198 |
-
)
|
199 |
-
inputs = inputs.to("cuda")
|
200 |
-
|
201 |
-
# Inference: Generation of the output
|
202 |
-
output_ids = model.generate(**inputs, max_new_tokens=128)
|
203 |
-
generated_ids = [
|
204 |
-
output_ids[len(input_ids) :]
|
205 |
-
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
206 |
-
]
|
207 |
-
output_text = processor.batch_decode(
|
208 |
-
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
209 |
-
)
|
210 |
-
print(output_text)
|
211 |
```
|
212 |
-
</details>
|
213 |
-
|
214 |
-
<details>
|
215 |
-
<summary>Multi image inference</summary>
|
216 |
|
|
|
217 |
```python
|
218 |
-
|
219 |
-
messages = [
|
220 |
-
{
|
221 |
-
"role": "user",
|
222 |
-
"content": [
|
223 |
-
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
224 |
-
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
225 |
-
{"type": "text", "text": "Identify the similarities between these images."},
|
226 |
-
],
|
227 |
-
}
|
228 |
-
]
|
229 |
-
|
230 |
-
# Preparation for inference
|
231 |
-
text = processor.apply_chat_template(
|
232 |
-
messages, tokenize=False, add_generation_prompt=True
|
233 |
-
)
|
234 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
235 |
-
inputs = processor(
|
236 |
-
text=[text],
|
237 |
-
images=image_inputs,
|
238 |
-
videos=video_inputs,
|
239 |
-
padding=True,
|
240 |
-
return_tensors="pt",
|
241 |
-
)
|
242 |
-
inputs = inputs.to("cuda")
|
243 |
-
|
244 |
-
# Inference
|
245 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
246 |
-
generated_ids_trimmed = [
|
247 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
248 |
-
]
|
249 |
-
output_text = processor.batch_decode(
|
250 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
251 |
-
)
|
252 |
-
print(output_text)
|
253 |
-
```
|
254 |
-
</details>
|
255 |
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
{
|
263 |
-
"role": "user",
|
264 |
-
"content": [
|
265 |
-
{
|
266 |
-
"type": "video",
|
267 |
-
"video": [
|
268 |
-
"file:///path/to/frame1.jpg",
|
269 |
-
"file:///path/to/frame2.jpg",
|
270 |
-
"file:///path/to/frame3.jpg",
|
271 |
-
"file:///path/to/frame4.jpg",
|
272 |
-
],
|
273 |
-
"fps": 1.0,
|
274 |
-
},
|
275 |
-
{"type": "text", "text": "Describe this video."},
|
276 |
-
],
|
277 |
-
}
|
278 |
-
]
|
279 |
-
# Messages containing a video and a text query
|
280 |
-
messages = [
|
281 |
-
{
|
282 |
-
"role": "user",
|
283 |
-
"content": [
|
284 |
-
{
|
285 |
-
"type": "video",
|
286 |
-
"video": "file:///path/to/video1.mp4",
|
287 |
-
"max_pixels": 360 * 420,
|
288 |
-
"fps": 1.0,
|
289 |
-
},
|
290 |
-
{"type": "text", "text": "Describe this video."},
|
291 |
-
],
|
292 |
-
}
|
293 |
-
]
|
294 |
-
|
295 |
-
# Preparation for inference
|
296 |
-
text = processor.apply_chat_template(
|
297 |
-
messages, tokenize=False, add_generation_prompt=True
|
298 |
-
)
|
299 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
300 |
-
inputs = processor(
|
301 |
-
text=[text],
|
302 |
-
images=image_inputs,
|
303 |
-
videos=video_inputs,
|
304 |
-
padding=True,
|
305 |
-
return_tensors="pt",
|
306 |
-
)
|
307 |
-
inputs = inputs.to("cuda")
|
308 |
-
|
309 |
-
# Inference
|
310 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
311 |
-
generated_ids_trimmed = [
|
312 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
313 |
-
]
|
314 |
-
output_text = processor.batch_decode(
|
315 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
316 |
-
)
|
317 |
-
print(output_text)
|
318 |
-
```
|
319 |
-
</details>
|
320 |
|
321 |
-
|
322 |
-
|
|
|
|
|
323 |
|
|
|
324 |
```python
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
images=image_inputs,
|
352 |
-
videos=video_inputs,
|
353 |
-
padding=True,
|
354 |
-
return_tensors="pt",
|
355 |
-
)
|
356 |
-
inputs = inputs.to("cuda")
|
357 |
-
|
358 |
-
# Batch Inference
|
359 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
360 |
-
generated_ids_trimmed = [
|
361 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
362 |
-
]
|
363 |
-
output_texts = processor.batch_decode(
|
364 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
365 |
-
)
|
366 |
-
print(output_texts)
|
367 |
```
|
368 |
-
</details>
|
369 |
|
370 |
-
|
371 |
|
372 |
-
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
"role": "user",
|
380 |
-
"content": [
|
381 |
-
{"type": "image", "image": "file:///path/to/your/image.jpg"},
|
382 |
-
{"type": "text", "text": "Describe this image."},
|
383 |
-
],
|
384 |
-
}
|
385 |
-
]
|
386 |
-
## Image URL
|
387 |
-
messages = [
|
388 |
-
{
|
389 |
-
"role": "user",
|
390 |
-
"content": [
|
391 |
-
{"type": "image", "image": "http://path/to/your/image.jpg"},
|
392 |
-
{"type": "text", "text": "Describe this image."},
|
393 |
-
],
|
394 |
-
}
|
395 |
-
]
|
396 |
-
## Base64 encoded image
|
397 |
-
messages = [
|
398 |
-
{
|
399 |
-
"role": "user",
|
400 |
-
"content": [
|
401 |
-
{"type": "image", "image": "data:image;base64,/9j/..."},
|
402 |
-
{"type": "text", "text": "Describe this image."},
|
403 |
-
],
|
404 |
-
}
|
405 |
-
]
|
406 |
```
|
407 |
-
#### Image Resolution for performance boost
|
408 |
|
409 |
-
|
410 |
|
411 |
-
|
412 |
-
min_pixels = 256 * 28 * 28
|
413 |
-
max_pixels = 1280 * 28 * 28
|
414 |
-
processor = AutoProcessor.from_pretrained(
|
415 |
-
model_dir, min_pixels=min_pixels, max_pixels=max_pixels
|
416 |
-
)
|
417 |
-
```
|
418 |
|
419 |
-
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
|
424 |
|
425 |
-
```
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
"resized_width": 420,
|
436 |
-
},
|
437 |
-
{"type": "text", "text": "Describe this image."},
|
438 |
-
],
|
439 |
-
}
|
440 |
-
]
|
441 |
-
# resized_height and resized_width
|
442 |
-
messages = [
|
443 |
-
{
|
444 |
-
"role": "user",
|
445 |
-
"content": [
|
446 |
-
{
|
447 |
-
"type": "image",
|
448 |
-
"image": "file:///path/to/your/image.jpg",
|
449 |
-
"min_pixels": 50176,
|
450 |
-
"max_pixels": 50176,
|
451 |
-
},
|
452 |
-
{"type": "text", "text": "Describe this image."},
|
453 |
-
],
|
454 |
-
}
|
455 |
-
]
|
456 |
```
|
457 |
|
458 |
-
##
|
459 |
-
|
460 |
-
While Qwen2-VL are applicable to a wide range of visual tasks, it is equally important to understand its limitations. Here are some known restrictions:
|
461 |
|
462 |
-
|
463 |
-
2. Data timeliness: Our image dataset is **updated until June 2023**, and information subsequent to this date may not be covered.
|
464 |
-
3. Constraints in Individuals and Intellectual Property (IP): The model's capacity to recognize specific individuals or IPs is limited, potentially failing to comprehensively cover all well-known personalities or brands.
|
465 |
-
4. Limited Capacity for Complex Instruction: When faced with intricate multi-step instructions, the model's understanding and execution capabilities require enhancement.
|
466 |
-
5. Insufficient Counting Accuracy: Particularly in complex scenes, the accuracy of object counting is not high, necessitating further improvements.
|
467 |
-
6. Weak Spatial Reasoning Skills: Especially in 3D spaces, the model's inference of object positional relationships is inadequate, making it difficult to precisely judge the relative positions of objects.
|
468 |
|
469 |
-
|
470 |
|
|
|
471 |
|
472 |
-
##
|
473 |
|
474 |
-
|
|
|
|
|
|
|
|
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
title={Qwen2-VL},
|
479 |
-
author={Qwen team},
|
480 |
-
year={2024}
|
481 |
-
}
|
482 |
-
|
483 |
-
@article{Qwen-VL,
|
484 |
-
title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
|
485 |
-
author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
|
486 |
-
journal={arXiv preprint arXiv:2308.12966},
|
487 |
-
year={2023}
|
488 |
-
}
|
489 |
-
```
|
|
|
1 |
+
[![SVG Banners](https://svg-banners.vercel.app/api?type=origin&text1=CosyVoice🤠&text2=Text-to-Speech%20💖%20Large%20Language%20Model&width=800&height=210)](https://github.com/Akshay090/svg-banners)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
## 👉🏻 CosyVoice 👈🏻
|
4 |
+
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
5 |
|
6 |
+
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
7 |
|
8 |
+
## Highlight🔥
|
9 |
|
10 |
+
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
11 |
+
### Multilingual
|
12 |
+
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
13 |
+
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
14 |
+
### Ultra-Low Latency
|
15 |
+
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
16 |
+
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
17 |
+
### High Accuracy
|
18 |
+
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
19 |
+
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
20 |
+
### Strong Stability
|
21 |
+
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
22 |
+
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
23 |
+
### Natural Experience
|
24 |
+
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
25 |
+
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
26 |
|
27 |
+
## Roadmap
|
28 |
|
29 |
+
- [x] 2024/12
|
30 |
|
31 |
+
- [x] 25hz cosyvoice 2.0 released
|
32 |
|
33 |
+
- [x] 2024/09
|
34 |
|
35 |
+
- [x] 25hz cosyvoice base model
|
36 |
+
- [x] 25hz cosyvoice voice conversion model
|
37 |
|
38 |
+
- [x] 2024/08
|
39 |
|
40 |
+
- [x] Repetition Aware Sampling(RAS) inference for llm stability
|
41 |
+
- [x] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
42 |
|
43 |
+
- [x] 2024/07
|
44 |
|
45 |
+
- [x] Flow matching training support
|
46 |
+
- [x] WeTextProcessing support when ttsfrd is not available
|
47 |
+
- [x] Fastapi server and client
|
48 |
|
|
|
49 |
|
50 |
+
## Install
|
51 |
|
52 |
+
**Clone and install**
|
53 |
|
54 |
+
- Clone the repo
|
55 |
+
``` sh
|
56 |
+
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
57 |
+
# If you failed to clone submodule due to network failures, please run following command until success
|
58 |
+
cd CosyVoice
|
59 |
+
git submodule update --init --recursive
|
60 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
- Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
|
63 |
+
- Create Conda env:
|
64 |
+
|
65 |
+
``` sh
|
66 |
+
conda create -n cosyvoice python=3.10
|
67 |
+
conda activate cosyvoice
|
68 |
+
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
69 |
+
conda install -y -c conda-forge pynini==2.1.5
|
70 |
+
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
71 |
+
|
72 |
+
# If you encounter sox compatibility issues
|
73 |
+
# ubuntu
|
74 |
+
sudo apt-get install sox libsox-dev
|
75 |
+
# centos
|
76 |
+
sudo yum install sox sox-devel
|
77 |
+
```
|
78 |
|
79 |
+
**Model download**
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
82 |
|
83 |
+
``` python
|
84 |
+
# SDK模型下载
|
85 |
+
from modelscope import snapshot_download
|
86 |
+
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
87 |
+
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
88 |
+
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
|
89 |
+
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
90 |
+
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
91 |
+
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
92 |
```
|
93 |
+
|
94 |
+
``` sh
|
95 |
+
# git模型下载,请确保已安装git lfs
|
96 |
+
mkdir -p pretrained_models
|
97 |
+
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
98 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
99 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
|
100 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
101 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
102 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
103 |
```
|
104 |
|
105 |
+
Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
|
|
106 |
|
107 |
+
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
108 |
+
|
109 |
+
``` sh
|
110 |
+
cd pretrained_models/CosyVoice-ttsfrd/
|
111 |
+
unzip resource.zip -d .
|
112 |
+
pip install ttsfrd_dependency-0.1-py3-none-any.whl
|
113 |
+
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
114 |
```
|
115 |
|
116 |
+
**Basic Usage**
|
117 |
|
118 |
+
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
119 |
+
Follow code below for detailed usage of each model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
``` python
|
122 |
+
import sys
|
123 |
+
sys.path.append('third_party/Matcha-TTS')
|
124 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
125 |
+
from cosyvoice.utils.file_utils import load_wav
|
126 |
+
import torchaudio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
```
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
**CosyVoice2 Usage**
|
130 |
```python
|
131 |
+
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
134 |
+
# zero_shot usage
|
135 |
+
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
136 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
137 |
+
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
138 |
|
139 |
+
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
140 |
+
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
141 |
+
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# instruct usage
|
144 |
+
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
145 |
+
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
146 |
+
```
|
147 |
|
148 |
+
**CosyVoice Usage**
|
149 |
```python
|
150 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
151 |
+
# sft usage
|
152 |
+
print(cosyvoice.list_available_spks())
|
153 |
+
# change stream=True for chunk stream inference
|
154 |
+
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
155 |
+
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
156 |
+
|
157 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
158 |
+
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
159 |
+
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
160 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
161 |
+
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
162 |
+
# cross_lingual usage
|
163 |
+
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
|
164 |
+
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
165 |
+
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
166 |
+
# vc usage
|
167 |
+
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
|
168 |
+
source_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
|
169 |
+
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
170 |
+
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
171 |
+
|
172 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
173 |
+
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
174 |
+
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
175 |
+
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
```
|
|
|
177 |
|
178 |
+
**Start web demo**
|
179 |
|
180 |
+
You can use our web demo page to get familiar with CosyVoice quickly.
|
181 |
|
182 |
+
Please see the demo website for details.
|
183 |
+
|
184 |
+
``` python
|
185 |
+
# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
|
186 |
+
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
```
|
|
|
188 |
|
189 |
+
**Advanced Usage**
|
190 |
|
191 |
+
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
**Build for deployment**
|
194 |
|
195 |
+
Optionally, if you want service deployment,
|
196 |
+
you can run following steps.
|
|
|
197 |
|
198 |
+
``` sh
|
199 |
+
cd runtime/python
|
200 |
+
docker build -t cosyvoice:v1.0 .
|
201 |
+
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
202 |
+
# for grpc usage
|
203 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
204 |
+
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
205 |
+
# for fastapi usage
|
206 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
|
207 |
+
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
```
|
209 |
|
210 |
+
## Discussion & Communication
|
|
|
|
|
211 |
|
212 |
+
You can directly discuss on [Github Issues](https://github.com/FunAudioLLM/CosyVoice/issues).
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
You can also scan the QR code to join our official Dingding chat group.
|
215 |
|
216 |
+
<img src="./asset/dingding.png" width="250px">
|
217 |
|
218 |
+
## Acknowledge
|
219 |
|
220 |
+
1. We borrowed a lot of code from [FunASR](https://github.com/modelscope/FunASR).
|
221 |
+
2. We borrowed a lot of code from [FunCodec](https://github.com/modelscope/FunCodec).
|
222 |
+
3. We borrowed a lot of code from [Matcha-TTS](https://github.com/shivammehta25/Matcha-TTS).
|
223 |
+
4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
|
224 |
+
5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
|
225 |
|
226 |
+
## Disclaimer
|
227 |
+
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|