File size: 7,598 Bytes
c96e306
d19e0ed
 
 
 
c96e306
b51656d
d19e0ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: mit
pipeline_tag: text-to-image
tags:
- image-to-image
---

<h1 align="center">OmniGen: Unified Image Generation</h1>


<p align="center">
    <a href="">
        <img alt="Build" src="https://img.shields.io/badge/Project%20Page-OmniGen-yellow">
    </a>
    <a href="https://arxiv.org/abs/2409.11340">
            <img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-2409.11340-b31b1b.svg">
    </a>
    <a href="https://huggingface.co/spaces/Shitao/OmniGen">
        <img alt="License" src="https://img.shields.io/badge/HF%20Demo-🤗-lightblue">
    </a>
    <a href="https://huggingface.co/Shitao/OmniGen-v1">
        <img alt="Build" src="https://img.shields.io/badge/HF%20Model-🤗-yellow">
    </a>
</p>

<h4 align="center">
    <p>
        <a href=#2-news>News</a> |
        <a href=#3-methodology>Methodology</a> |
        <a href=#4-what-can-omnigen-do>Capabilities</a> |
        <a href=#5-quick-start>Quick Start</a> |
        <a href="#6-finetune">Finetune</a> |
        <a href="#license">License</a> |
        <a href="#citation">Citation</a>
    <p>
</h4>

More information please refer to our github repo: https://github.com/VectorSpaceLab/OmniGen

## 1. Overview

OmniGen is a unified image generation model that can generate a wide range of images from multi-modal prompts. It is designed to be simple, flexible and easy to use. We provide [inference code](#5-quick-start) so that everyone can explore more functionalities of OmniGen.

Existing image generation models often require loading several additional network modules (such as ControlNet, IP-Adapter, Reference-Net, etc.) and performing extra preprocessing steps (e.g., face detection, pose estimation, cropping, etc.) to generate a satisfactory image. However, **we believe that the future image generation paradigm should be more simple and flexible, that is, generating various images directly through arbitrarily multi-modal instructions without the need for additional plugins and operations, similar to how GPT works in language generation.** 

Due to the limited resources, OmniGen still has room for improvement. We will continue to optimize it, and hope it inspire more universal image generation models. You can also easily fine-tune OmniGen without worrying about designing networks for specific tasks; you just need to prepare the corresponding data, and then run the [script](#6-finetune). Imagination is no longer limited; everyone can construct any image generation task, and perhaps we can achieve very interesting, wonderful and creative things.

If you have any questions, ideas or interesting tasks you want OmniGen to accomplish, feel free to discuss with us: [email protected], [email protected], [email protected]. We welcome any feedback to help us improve the model.



## 2. News
- 2024-10-22: :fire: We release the code for OmniGen. Inference: [docs/inference.md](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/inference.md) Train: [docs/fine-tuning.md](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/fine-tuning.md) 
- 2024-10-22: :fire: We release the first version of OmniGen. Model Weight: [Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1) HF Demo: [🤗](https://huggingface.co/spaces/Shitao/OmniGen)  



## 3. Methodology

You can see details in our [paper](https://arxiv.org/abs/2409.11340). 


## 4. What Can OmniGen do?
![demo](./demo_cases.png)

OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, image editing, and image-conditioned generation. **OmniGen don't need additional plugins or operations, it can automatically identify the features (e.g., required object, human pose, depth mapping) in input images according the text prompt.**
We showcase some examples in [inference.ipynb](https://github.com/VectorSpaceLab/OmniGen/blob/main/inference.ipynb). And in [inference_demo.ipynb](https://github.com/VectorSpaceLab/OmniGen/blob/main/inference_demo.ipynb), we show a insteresting pipeline to generate and modify a image.

If you are not entirely satisfied with certain functionalities or wish to add new capabilities, you can try [fine-tuning OmniGen](#6-finetune).



## 5. Quick Start


### Using OmniGen
Install via Github(Recommend):
```bash
git clone https://github.com/staoxiao/OmniGen.git
cd OmniGen
pip install -e .
```
or via pypi:
```bash
pip install OmniGen
```

Here are some examples:
```python
from OmniGen import OmniGenPipeline

pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")

# Text to Image
images = pipe(
    prompt="A curly-haired man in a red shirt is drinking tea.", 
    height=1024, 
    width=1024, 
    guidance_scale=2.5,
    seed=0,
)
images[0].save("example_t2i.png")  # save output PIL Image

# Multi-modal to Image
# In prompt, we use the placeholder to represent the image. The image placeholder should be in the format of <img><|image_*|></img>
# You can add multiple images in the input_images. Please ensure that each image has its placeholder. For example, for the list input_images [img1_path, img2_path], the prompt needs to have two placeholders: <img><|image_1|></img>, <img><|image_2|></img>.
images = pipe(
    prompt="A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>."
    input_images=["./imgs/test_cases/two_man.jpg"]
    height=1024, 
    width=1024,
    separate_cfg_infer=False,  # if OOM, you can set separate_cfg_infer=True 
    guidance_scale=3, 
    img_guidance_scale=1.6
)
images[0].save("example_ti2i.png")  # save output PIL image
```
For more details about the argument in inference, please refer to [docs/inference.md](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/inference.md). 
For more examples for image generation, you can refer to [inference.ipynb](https://github.com/VectorSpaceLab/OmniGen/blob/main/inference.ipynb) and [inference_demo.ipynb](https://github.com/VectorSpaceLab/OmniGen/blob/main/inference_demo.ipynb)


### Using Diffusers
Coming soon.


### Gradio Demo

We construct an online demo in [Huggingface](https://huggingface.co/spaces/Shitao/OmniGen).

For the local gradio demo, you can run:
```python
python app.py
```



## 6. Finetune
We provide a training script `train.py` to fine-tune OmniGen. 
Here is a toy example about LoRA finetune:
```bash
accelerate launch --num_processes=1 train.py \
    --model_name_or_path Shitao/OmniGen-v1 \
    --batch_size_per_device 2 \
    --condition_dropout_prob 0.01 \
    --lr 1e-3 \
    --use_lora \
    --lora_rank 8 \
    --json_file ./toy_data/toy_subject_data.jsonl \
    --image_path ./toy_data/images \
    --max_input_length_limit 18000 \
    --keep_raw_resolution \
    --max_image_size 1024 \
    --gradient_accumulation_steps 1 \
    --ckpt_every 10 \
    --epochs 200 \
    --log_every 1 \
    --results_dir ./results/toy_finetune_lora
```

Please refer to [docs/finetune.md](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/fine-tune.md) for more details (e.g. full finetune).



## License
This repo is licensed under the [MIT License](LICENSE). 


## Citation
If you find this repository useful, please consider giving a star ⭐ and citation
```
@article{xiao2024omnigen,
  title={Omnigen: Unified image generation},
  author={Xiao, Shitao and Wang, Yueze and Zhou, Junjie and Yuan, Huaying and Xing, Xingrun and Yan, Ruiran and Wang, Shuting and Huang, Tiejun and Liu, Zheng},
  journal={arXiv preprint arXiv:2409.11340},
  year={2024}
}
```