Brandon Royal
commited on
Commit
·
0ab4276
1
Parent(s):
221d1e4
updated README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ license_name: gemma-terms-of-use
|
|
9 |
license_link: https://ai.google.dev/gemma/terms
|
10 |
---
|
11 |
|
12 |
-
AWQ quantized version of gemma-2b
|
13 |
|
14 |
---
|
15 |
|
@@ -61,22 +61,6 @@ In that repository, we provide:
|
|
61 |
|
62 |
|
63 |
|
64 |
-
#### Running the model on a CPU
|
65 |
-
|
66 |
-
|
67 |
-
```python
|
68 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
69 |
-
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
71 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
72 |
-
|
73 |
-
input_text = "Write me a poem about Machine Learning."
|
74 |
-
input_ids = tokenizer(input_text, return_tensors="pt")
|
75 |
-
|
76 |
-
outputs = model.generate(**input_ids)
|
77 |
-
print(tokenizer.decode(outputs[0]))
|
78 |
-
```
|
79 |
-
|
80 |
|
81 |
#### Running the model on a single / multi GPU
|
82 |
|
@@ -85,8 +69,8 @@ print(tokenizer.decode(outputs[0]))
|
|
85 |
# pip install accelerate
|
86 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
87 |
|
88 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
89 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
|
90 |
|
91 |
input_text = "Write me a poem about Machine Learning."
|
92 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -104,62 +88,8 @@ print(tokenizer.decode(outputs[0]))
|
|
104 |
# pip install accelerate
|
105 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
106 |
|
107 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
108 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16)
|
109 |
-
|
110 |
-
input_text = "Write me a poem about Machine Learning."
|
111 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
112 |
-
|
113 |
-
outputs = model.generate(**input_ids)
|
114 |
-
print(tokenizer.decode(outputs[0]))
|
115 |
-
```
|
116 |
-
|
117 |
-
* _Using `torch.bfloat16`_
|
118 |
-
|
119 |
-
```python
|
120 |
-
# pip install accelerate
|
121 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
122 |
-
|
123 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
124 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16)
|
125 |
-
|
126 |
-
input_text = "Write me a poem about Machine Learning."
|
127 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
128 |
-
|
129 |
-
outputs = model.generate(**input_ids)
|
130 |
-
print(tokenizer.decode(outputs[0]))
|
131 |
-
```
|
132 |
-
|
133 |
-
#### Quantized Versions through `bitsandbytes`
|
134 |
-
|
135 |
-
* _Using 8-bit precision (int8)_
|
136 |
-
|
137 |
-
```python
|
138 |
-
# pip install bitsandbytes accelerate
|
139 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
140 |
-
|
141 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
142 |
-
|
143 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
144 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
|
145 |
-
|
146 |
-
input_text = "Write me a poem about Machine Learning."
|
147 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
148 |
-
|
149 |
-
outputs = model.generate(**input_ids)
|
150 |
-
print(tokenizer.decode(outputs[0]))
|
151 |
-
```
|
152 |
-
|
153 |
-
* _Using 4-bit precision_
|
154 |
-
|
155 |
-
```python
|
156 |
-
# pip install bitsandbytes accelerate
|
157 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
158 |
-
|
159 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
160 |
-
|
161 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
162 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
|
163 |
|
164 |
input_text = "Write me a poem about Machine Learning."
|
165 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
9 |
license_link: https://ai.google.dev/gemma/terms
|
10 |
---
|
11 |
|
12 |
+
AWQ quantized version of [google/gemma-2b](https://huggingface.co/google/gemma-2b).
|
13 |
|
14 |
---
|
15 |
|
|
|
61 |
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
#### Running the model on a single / multi GPU
|
66 |
|
|
|
69 |
# pip install accelerate
|
70 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
71 |
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-AWQ")
|
73 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-AWQ", device_map="auto")
|
74 |
|
75 |
input_text = "Write me a poem about Machine Learning."
|
76 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
88 |
# pip install accelerate
|
89 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
90 |
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-AWQ")
|
92 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-AWQ", device_map="auto", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
input_text = "Write me a poem about Machine Learning."
|
95 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|